Integrasie is een van die hoofbewerkings van kalkulus . Vir differensiasie kan die eenvoudiger dele van 'n funksie maklik gedifferensieer word, wat differensiasie dan vergemaklik, maar dit kan egter nie met integrasie gedoen word nie. Vir gevalle waar daar met komplekse funksies gewerk word, is dit makliker om 'n lys van integrale byderhand te hou.
Vir die doeleindes van hierdie lys word K as arbitrêre-integrasiekonstante gebruik.
Reëls by die integreer van algemene funksies
wysig
∫
a
f
(
x
)
d
x
=
a
∫
f
(
x
)
d
x
(
a
konstant)
{\displaystyle \int af(x)\,dx=a\int f(x)\,dx\qquad {\mbox{(}}a{\mbox{ konstant)}}\,\!}
∫
[
f
(
x
)
+
g
(
x
)
]
d
x
=
∫
f
(
x
)
d
x
+
∫
g
(
x
)
d
x
{\displaystyle \int [f(x)+g(x)]\,dx=\int f(x)\,dx+\int g(x)\,dx}
∫
f
(
x
)
g
(
x
)
d
x
=
f
(
x
)
∫
g
(
x
)
d
x
−
∫
[
f
′
(
x
)
(
∫
g
(
x
)
d
x
)
]
d
x
{\displaystyle \int f(x)g(x)\,dx=f(x)\int g(x)\,dx-\int \left[f'(x)\left(\int g(x)\,dx\right)\right]\,dx}
∫
[
f
(
x
)
]
n
f
′
(
x
)
d
x
=
[
f
(
x
)
]
n
+
1
n
+
1
+
K
(vir
n
≠
−
1
)
{\displaystyle \int [f(x)]^{n}f'(x)\,dx={[f(x)]^{n+1} \over n+1}+K\qquad {\mbox{(vir }}n\neq -1{\mbox{)}}\,\!}
∫
f
′
(
x
)
f
(
x
)
d
x
=
ln
|
f
(
x
)
|
+
K
{\displaystyle \int {f'(x) \over f(x)}\,dx=\ln {\left|f(x)\right|}+K}
∫
f
′
(
x
)
f
(
x
)
d
x
=
1
2
[
f
(
x
)
]
2
+
K
{\displaystyle \int {f'(x)f(x)}\,dx={1 \over 2}[f(x)]^{2}+K}
Integrale van eenvoudige funksies
wysig
∫
d
x
=
x
+
K
{\displaystyle \int \,{\rm {d}}x=x+K}
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
K
mits
n
≠
−
1
{\displaystyle \int x^{n}\,{\rm {d}}x={\frac {x^{n+1}}{n+1}}+K\qquad {\mbox{ mits }}n\neq -1}
∫
d
x
x
=
ln
|
x
|
+
K
{\displaystyle \int {dx \over x}=\ln {\left|x\right|}+K}
∫
d
x
a
2
+
x
2
=
1
a
(bgtan)
x
a
+
K
{\displaystyle \int {dx \over {a^{2}+x^{2}}}={1 \over a}{\mbox{(bgtan)}}{x \over a}+K}
Irrasionale funksies
wysig
∫
d
x
a
2
−
x
2
=
sin
−
1
x
a
+
K
{\displaystyle \int {dx \over {\sqrt {a^{2}-x^{2}}}}=\sin ^{-1}{x \over a}+K}
∫
−
d
x
a
2
−
x
2
=
cos
−
1
x
a
+
K
{\displaystyle \int {-dx \over {\sqrt {a^{2}-x^{2}}}}=\cos ^{-1}{x \over a}+K}
∫
d
x
x
x
2
−
a
2
=
1
a
sec
−
1
|
x
|
a
+
K
{\displaystyle \int {dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\sec ^{-1}{|x| \over a}+K}
∫
ln
x
d
x
=
x
ln
x
−
x
+
K
{\displaystyle \int \ln {x}\,dx=x\ln {x}-x+K}
∫
log
b
x
d
x
=
x
log
b
x
−
x
log
b
e
+
K
{\displaystyle \int \log _{b}{x}\,dx=x\log _{b}{x}-x\log _{b}{e}+K}
Eksponensiaalfunksies
wysig
∫
e
x
d
x
=
e
x
+
K
{\displaystyle \int e^{x}\,dx=e^{x}+K}
∫
a
x
d
x
=
a
x
ln
a
+
K
{\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln {a}}}+K}
Trigonometriese funksies
wysig
∫
sin
x
d
x
=
−
cos
x
+
K
{\displaystyle \int \sin {x}\,dx=-\cos {x}+K}
∫
cos
x
d
x
=
sin
x
+
K
{\displaystyle \int \cos {x}\,dx=\sin {x}+K}
∫
tan
x
d
x
=
ln
|
sec
x
|
+
K
{\displaystyle \int \tan {x}\,dx=\ln {\left|\sec {x}\right|}+K}
∫
cot
x
d
x
=
−
ln
|
csc
x
|
+
K
{\displaystyle \int \cot {x}\,dx=-\ln {\left|\csc {x}\right|}+K}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
K
{\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+K}
∫
csc
x
d
x
=
−
ln
|
csc
x
+
cot
x
|
+
K
{\displaystyle \int \csc {x}\,dx=-\ln {\left|\csc {x}+\cot {x}\right|}+K}
∫
sec
2
x
d
x
=
tan
x
+
K
{\displaystyle \int \sec ^{2}x\,dx=\tan x+K}
∫
csc
2
x
d
x
=
−
cot
x
+
K
{\displaystyle \int \csc ^{2}x\,dx=-\cot x+K}
∫
sec
x
tan
x
d
x
=
sec
x
+
K
{\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+K}
∫
csc
x
cot
x
d
x
=
−
csc
x
+
K
{\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+K}
∫
sin
2
x
d
x
=
1
2
(
x
−
sin
x
cos
x
)
+
K
{\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}(x-\sin x\cos x)+K}
∫
cos
2
x
d
x
=
1
2
(
x
+
sin
x
cos
x
)
+
K
{\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}(x+\sin x\cos x)+K}
∫
sec
3
x
d
x
=
1
2
sec
x
tan
x
+
1
2
ln
|
sec
x
+
tan
x
|
+
K
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+K}
∫
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
∫
cos
n
x
d
x
=
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
∫
bgtan
x
d
x
=
x
bgtan
x
−
1
2
ln
|
1
+
x
2
|
+
K
{\displaystyle \int {\mbox{bgtan}}{x}\,dx=x\,{\mbox{bgtan}}{x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+K}
Hiperboliese funksies
wysig
∫
sinh
x
d
x
=
cosh
x
+
K
{\displaystyle \int \sinh x\,dx=\cosh x+K}
∫
cosh
x
d
x
=
sinh
x
+
K
{\displaystyle \int \cosh x\,dx=\sinh x+K}
∫
tanh
x
d
x
=
ln
|
cosh
x
|
+
K
{\displaystyle \int \tanh x\,dx=\ln |\cosh x|+K}
∫
csch
x
d
x
=
ln
|
tanh
x
2
|
+
K
{\displaystyle \int {\mbox{csch}}\,x\,dx=\ln \left|\tanh {x \over 2}\right|+K}
∫
sech
x
d
x
=
bgtan
(
sinh
x
)
+
K
{\displaystyle \int {\mbox{sech}}\,x\,dx={\mbox{bgtan}}(\sinh x)+K}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
K
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+K}
∫
sech
2
x
d
x
=
tanh
x
+
K
{\displaystyle \int {\mbox{sech}}^{2}x\,dx=\tanh x+K}
Inverse hiperboliese funksies
wysig
∫
sinh
−
1
x
d
x
=
x
sinh
−
1
x
−
x
2
+
1
+
K
{\displaystyle \int \sinh ^{-1}x\,dx=x\sinh ^{-1}x-{\sqrt {x^{2}+1}}+K}
∫
cosh
−
1
x
d
x
=
x
cosh
−
1
x
−
x
2
−
1
+
K
{\displaystyle \int \cosh ^{-1}x\,dx=x\cosh ^{-1}x-{\sqrt {x^{2}-1}}+K}
∫
tanh
−
1
x
d
x
=
x
tanh
−
1
x
+
1
2
log
(
1
−
x
2
)
+
K
{\displaystyle \int \tanh ^{-1}x\,dx=x\tanh ^{-1}x+{\frac {1}{2}}\log {(1-x^{2})}+K}
∫
csch
−
1
x
d
x
=
x
csch
−
1
x
+
log
[
x
(
1
+
1
x
2
+
1
)
]
+
K
{\displaystyle \int {\mbox{csch}}^{-1}\,x\,dx=x{\mbox{csch}}^{-1}x+\log {\left[x\left({\sqrt {1+{\frac {1}{x^{2}}}}}+1\right)\right]}+K}
∫
sech
−
1
x
d
x
=
x
sech
−
1
x
−
bgtan
(
x
x
−
1
1
−
x
1
+
x
)
+
K
{\displaystyle \int {\mbox{sech}}^{-1}\,x\,dx=x{\mbox{sech}}^{-1}x-{\mbox{bgtan}}{\left({\frac {x}{x-1}}{\sqrt {\frac {1-x}{1+x}}}\right)}+K}
∫
coth
−
1
x
d
x
=
x
coth
−
1
x
+
1
2
log
(
x
2
−
1
)
+
K
{\displaystyle \int \coth ^{-1}x\,dx=x\coth ^{-1}x+{\frac {1}{2}}\log {(x^{2}-1)}+K}
Bepaalde integrale sonder geslote-vorm afgeleides
wysig
∫
0
∞
x
e
−
x
d
x
=
1
2
π
{\displaystyle \int _{0}^{\infty }{{\sqrt {x}}\,e^{-x}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
∫
0
∞
e
−
x
2
d
x
=
1
2
π
{\displaystyle \int _{0}^{\infty }{e^{-x^{2}}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
(die Gaussiese integraal )
∫
0
∞
x
e
x
−
1
d
x
=
π
2
6
{\displaystyle \int _{0}^{\infty }{{\frac {x}{e^{x}-1}}\,dx}={\frac {\pi ^{2}}{6}}}
∫
0
∞
x
3
e
x
−
1
d
x
=
π
4
15
{\displaystyle \int _{0}^{\infty }{{\frac {x^{3}}{e^{x}-1}}\,dx}={\frac {\pi ^{4}}{15}}}
∫
0
∞
sin
(
x
)
x
d
x
=
π
2
{\displaystyle \int _{0}^{\infty }{\frac {\sin(x)}{x}}\,dx={\frac {\pi }{2}}}
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
1
⋅
3
⋅
5
⋅
⋯
⋅
(
n
−
1
)
2
⋅
4
⋅
6
⋅
⋯
⋅
n
π
2
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}{x}\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}{x}\,dx={\frac {1\cdot 3\cdot 5\cdot \cdots \cdot (n-1)}{2\cdot 4\cdot 6\cdot \cdots \cdot n}}{\frac {\pi }{2}}}
(mits n 'n ewe heelgetal en
n
≥
2
{\displaystyle \scriptstyle {n\geq 2}}
)
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
2
⋅
4
⋅
6
⋅
⋯
⋅
(
n
−
1
)
3
⋅
5
⋅
7
⋅
⋯
⋅
n
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}{x}\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}{x}\,dx={\frac {2\cdot 4\cdot 6\cdot \cdots \cdot (n-1)}{3\cdot 5\cdot 7\cdot \cdots \cdot n}}}
(mits n 'n onewe heelgetal en
n
≥
3
{\displaystyle \scriptstyle {n\geq 3}}
)
∫
0
∞
sin
2
x
x
2
d
x
=
π
2
{\displaystyle \int _{0}^{\infty }{\frac {\sin ^{2}{x}}{x^{2}}}\,dx={\frac {\pi }{2}}}
∫
0
∞
x
z
−
1
e
−
x
d
x
=
Γ
(
z
)
{\displaystyle \int _{0}^{\infty }x^{z-1}\,e^{-x}\,dx=\Gamma (z)}
(waar
Γ
(
z
)
{\displaystyle \Gamma (z)}
die Gamma funksie is)
∫
−
∞
∞
e
−
(
a
x
2
+
b
x
+
c
)
d
x
=
π
a
exp
[
b
2
−
4
a
c
4
a
]
{\displaystyle \int _{-\infty }^{\infty }e^{-(ax^{2}+bx+c)}\,dx={\sqrt {\frac {\pi }{a}}}\exp \left[{\frac {b^{2}-4ac}{4a}}\right]}
(waar
exp
[
u
]
{\displaystyle \exp[u]}
die eksponensiaalfunksie
e
u
{\displaystyle e^{u}}
is.)
∫
0
2
π
e
x
cos
θ
d
θ
=
2
π
I
0
(
x
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}
(waar
I
0
(
x
)
{\displaystyle I_{0}(x)}
die gewysigde Bessel funksie van die eerste tipe is.)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
d
θ
=
2
π
I
0
x
2
+
y
2
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}{\sqrt {x^{2}+y^{2}}}}
∫
−
∞
∞
(
1
+
x
2
/
ν
)
−
(
ν
+
1
)
/
2
d
x
=
ν
π
Γ
(
ν
/
2
)
Γ
(
(
ν
+
1
)
/
2
)
)
{\displaystyle \int _{-\infty }^{\infty }{(1+x^{2}/\nu )^{-(\nu +1)/2}dx}={\frac {{\sqrt {\nu \pi }}\ \Gamma (\nu /2)}{\Gamma ((\nu +1)/2))}}\,}
(
ν
>
0
{\displaystyle \nu >0\,}
.
∫
a
b
f
(
x
)
d
x
=
(
b
−
a
)
∑
n
=
1
∞
∑
m
=
1
2
n
−
1
(
−
1
)
m
+
1
2
−
n
f
(
a
+
m
(
b
−
a
)
2
−
n
)
{\displaystyle \int _{a}^{b}{f(x)\,dx}=(b-a)\sum \limits _{n=1}^{\infty }{\sum \limits _{m=1}^{2^{n}-1}{\left({-1}\right)^{m+1}}}2^{-n}f(a+m\left({b-a}\right)2^{-n})}
Stewart, J. (2003). Single Variable calculus . (5th ed.). Belmont, USA: Thomson Learning.
Groenewald, G.J., Hitge, M. (2005). Analise II Studiegids vir WISK121A . Potchefstroom: Noordwes-Universiteit.
Jordan, D.W., Smith, P. (2002). Mathematical techniques: An introduction for the engineering, physical and mathematical sciences . USA: Oxford University Press.