Venus

Tweede planeet vanaf die Son
(Aangestuur vanaf Venus (planeet))
Hierdie artikel handel oor die planeet Venus. Vir ander betekenisse van die naam, sien Venus (dubbelsinnig).

Venus is die tweede planeet van die Son af. Dit is 'n rotsplaneet met die digste atmosfeer van al die rotsplanete in die Sonnestelsel en die enigste een met 'n massa en grootte van naby dié van sy buurman die Aarde. Dit wentel nader aan die Son as die Aarde en lyk van die Aarde af altyd of dit naby die Son is, as óf die "oggendster" óf die "aandster". Hoewel dieselfde vir Mercurius geld, lyk Venus baie prominenter, want dit is die helderste voorwerp in ons naglug buiten die Son en die Maan.[11][12] Dit is selfs helderder as enige ster. Omdat hy so helder is, is Venus histories 'n algemene en belangrike voorwerp vir mense, beide in hulle kultuur en in sterrekunde.

Venus   ♀
Die planeet Venus
Venus, soos waargeneem deur die Mariner 10-wenteltuig.
Wentelbaaneienskappe
Epog J2000
Afelium 108 942 109 km
0.728 231 28 AE
Perihelium 107 476 259 km
0.718 432 70 AE
Halwe lengteas 108 208 930 km
0.723 332 AE
Wentelperiode 224.700 69 dae
0.615 197 0 jare
1,92 Venus solar dae
Sinodiese periode 583.92 dae[1][2]
Gem. omwentelingspoed 35,02 km/s
Baanhelling 3,394 71° (tot Ekliptika)
3,86° (tot die son se ewenaar)
2.19° (tot onveranderbare vlakte)[3]
Lengteligging van stygende nodus 76.670 69°
Periheliumhoek 54.852 29°
Natuurlike satelliete 0
Fisiese eienskappe
Radius by ewenaar 6 051,8 ± 1,0 km
(0,949 9 Aardes)
Oppervlakte 4,60×108 km2
(0,902 Aardes)
Volume 9,38×1011 km3
(0.866 Aardes)
Massa 4,868 5×1024 kg
(0,815 Aardes)
Gem. digtheid 5,204 g/cm3
Oppervlak-
aantrekkingskrag
8,87 m/s2
0,904 g
Ontsnapping-
snelheid
10,46 km/s
Sideriese
rotasieperiode
243,018 5 dae
Rotasiespoed
by ewenaar
6,52 km/h
1,81 m/s
Ashelling 177,3°[1]
Regte styging van noordpool 18 h 11 min 2 s
272,76°[4]
Deklinasie 67,16°
0,67 (geometries)[5]
0,90 (Bond)[5]
Oppervlak-temp.
   Kelvin
   Celsius
mingem.maks
735 K[1][6][7]
460 °C
Skynmagnitude −4,9[8][9] tot −3,8[10]
Hoekgrootte 9,7"–66,0"[1]
Atmosfeer
Oppervlakdruk 93 bar
9,3 MPa
Samestelling ~96,5% Koolstofdioksied

~3,5% Stikstof
0,015% Swaweldioksied
0,007% Argon
0,002% Waterdamp
0,001 7% Stikstofmonoksied
0,001 2% Helium
0,000 7% Neon
spore van Koolstofsulfied
spore van Waterstofchloried

spore van Waterstoffluoried

Venus het 'n swak magnetosfeer en 'n uiters dik atmosfeer van koolstofdioksied wat, tesame met sy planeetwye wolkkombers van swaelsuur, 'n uiterse kweekhuiseffek veroorsaak. Dit lei tot 'n gemiddelde oppervlaktemperatuur van 737 K (464 °C) en 'n verpletterende druk van 92 keer dié van die Aarde by seevlak. Dit verander die lug in 'n oorkritieke vloeistof, terwyl die druk, temperatuur en straling by hoogtes van 50 km bo die oppervlak baie soos die Aarde s'n is.

Toestande wat dalk gunstig vir lewe op Venus is, is in sy wolklae geïdentifiseer: Onlangse navorsing het aanduidings, maar nie oortuigende bewyse nie, gevind vir lewe op die planeet. Venus kon vroeg in sy geskiedenis vloeibare oppervlakwater gehad het, moontlik genoeg om oseane te vorm, maar 'n wegholkweekhuiseffek het eindelik alle water laat verdamp, en dit is toe deur die sonwind die ruimte ingedra.[13][14][15]

Venus het vermoedelik 'n kern, mantel en kors, waarvan laasgenoemde interne hitte deur vulkanisme vrystel. Dit hervorm die oppervlak deur dit te hernu in plaas van deur plaattektoniek. Op 26 Oktober 2023 is die resultate van 'n studie egter bekend gemaak waarvolgens Venus in antieke tye plaattektoniek en gunstiger omstadighede vir lewe kon gehad het.[16][17] Venus is een van twee planete in die Sonnestelsel wat nie natuurlike satelliete, of mane, het nie.[18]

Venus se rotasie is deur die sterk strome en sleuring van sy atmosfeer verlangsaam en omgekeer in 'n retrograde beweging. Dié rotasie – tesame met die 224,7 aarddae wat dit Venus neem om 'n volle omwenteling om die Son te voltooi ('n Venusjaar) en 'n Venusdag van 117 aarddae – lei daartoe dat 'n Venusjaar net minder as twee Venusdae lank is. Venus en die Aarde se wentelbane is die naaste aan mekaar van al die planete: Hulle sinodiese periode (die tyd tussen konjunksies) is 1,6 jaar.

In 1961 het Venus die teiken van Wenera 1, die eerste interplanetêre vlug in die mens se geskiedenis, geword. Daarna het ander noodsaaklike interplanetêre eerstes gevolg, soos die eerste sagte landing op 'n ander planeet (Wenera 7, 1970). Dié tuie het dit duidelik gemaak dat 'n uiterse kweekhuiseffek onleefbare oppervlaktoestande geskep het, 'n feit wat die mens meer geleer het in sy voorspellings van aardverwarming.[19][20]

Dié bewyse het die mens laat afsien van wetenskapsfiksie-idees dat Venus bewoonbaar is of selfs bewoon word. Tog is voorstelle vir nog vlugte gedoen, óf as verbyvlugte óf vir 'n swaartekragslinger vir vlugte na Mars óf om Venus se atmosfeer binne te gaan en op veilige afstande bo die oppervlak te bly waar toestande meer met dié op Aarde ooreenstem.

Fisiese eienskappe

wysig
 
Venus se grootte in vergelyking met dié van die ander rotsplanete (van links: Mercurius, Venus, Aarde en Mars; volgens hulle afstand van die Son af).

Venus is een van vier aardplanete in die Sonnestelsel, wat beteken hulle het 'n rotsagtige oppervlak soos die Aarde. Sy grootte en massa stem baie ooreen met dié van die Aarde en dit word dikwels beskryf as die Aarde se "suster" of "tweeling".[21] Venus is feitlik sferies vanweë sy stadige rotasie.[22] Dit het 'n deursnee van 12 103,6 km – net 638,4 km kleiner as die Aarde s'n – en sy massa is 81,5% dié van die Aarde.

Toestande op Venus se oppervlak verskil drasties van dié op die Aarde s'n omdat sy digte atmosfeer uit 96,5% koolstofdioksied bestaan; die grootste deel van die ander 3,5% is stikstof.[23] Die oppervlakdruk is 9,3 megapascal (93 bar) en die gemiddelde oppervlaktemperatuur 737 K (464 °C), ver bo die kritieke punt van enige van die komponente. Dit maak die oppervlakatmosfeer 'n oorkritieke vloeistof van hoofsaaklik oorkritieke koolstofdioksied en die res oorkritieke stikstof.

Atmosfeer en klimaat

wysig
 
Die wolkstruktuur van Venus se atmosfeer, moontlik danksy ultravioletfotografie.

Venus het 'n digte atmosfeer van sowat 96,5% koolstofdioksied en 3,5% stikstof – albei kom as 'n oorkritieke vloeistof op die planeet se oppervlak voor met 'n digtheid van 6,5% dié van water[24] en spore van ander gasse soos swaeldioksied.[25]

Die atmosfeer se massa is 92 keer dié van die Aarde, terwyl die druk op sy oppervlak sowat 93 keer dié van die Aarde is: 'n druk gelyk aan dié van sowat 1 km onder die Aarde se oseane. Die digtheid op die oppervlak is 65 kg/m3, 6,5% dié van water[24] of 50 keer so dig as die Aarde se atmosfeer by 293 K (20 °C) by seevlak. Die atmosfeer met sy groot hoeveelheid CO2 skep die sterkste kweekhuiseffek in die Sonnestelsel en oppervlaktemperature van sowat 735 K (462 °C).[6][26] Venus se oppervlak is dus warmer as dié van Mercurius met sy minimum oppervlaktemperatuur van 53 K (-220 °C) en sy maksimum van 700 K (427 °C),[27][28] al is Venus byna twee keer so ver van die Son af as Mercurius en kry dit net 25% van Mercurius se sonuitstraling. Vanweë Venus se wegholkweekhuiseffek het wetenskaplikes soos Carl Sagan dit as 'n waarskuwing geïdentifiseer vir klimaatsverandering op Aarde.[19][20]

Venus se temperatuur[29]
Tipe Oppervlak-
temperatuur
Maksimum 482 °C
Normaal 453 °C
Minimum 438 °C

Venus se atmosfeer is ryk aan oer-edelgasse in vergelyking met dié van die Aarde.[30] Dit dui daarop dat Venus vroeg in sy evolusie van die Aarde afgewyk het. 'n Ongewone groot komeetbotsing[31] of die akkresie van 'n primêre atmosfeer van die sonnewel met 'n groter massa[32] is al voorgestel om die voorkoms van dié edelgasse te verduidelik.

Studies dui daarop dat Venus sa atmosfeer miljarde jare gelede baie meer soos die vroeë Aarde s'n gelyk het en dat daar aansienlike hoeveelhede vloeibare water op sy oppervlak kon gewees het.[33][34][35] Ná 'n tydperk van 600 miljoen tot miljarde jare[36] kon die groter wordende ligsterkte van die Son en moontlik groot vulkaniese uitbarstings gelei het tot die verdamping van dié water en die vernietiging van die atmosfeer.[37] 'n Wegholkweekhuiseffek het ontstaan toe 'n kritieke vlak van kweekhuisgasse (insluitende water) tot die atmosfeer gevoeg is.[38]

Hoewel die toestande op Venus enige aardagtige lewe wat voor dié tydperk kon bestaan het, onmoontlik maak, is daar spekulasie dat lewe in Venus se boonste wolklae voorkom, by 50 km van die oppervlak of hoër, waar die toestande die meeste soos die Aarde s'n is in die Sonnestelsel.[39] Temperature wissel hier tussen 303 en 353 K (30 en 80 °C) en die druk en straling is dieselfde as op die aarde se oppervlak, maar met suurwolke en die baie CO2 in die lug.[40][41][42]

Die beweerde waarneming van 'n absorpsielyn van fosfien in Venus se atmosfeer, met geen bekende pad vir abiotiese produksie nie, het in September 2020 gelei tot spekulasies dat lewe tans in die atmosfeer kan bestaan.[43][44] Latere navorsing het die spektroskopiese teken wat as fosfien vertolk is, aan swaeldioksied toegeskryf,[45] of bevind dat daar geen absorpsielyn is nie.[46][47]

 
Soorte wolklae op Venus, sowel as temperatuur- en drukveranderings volgens hoogte in die atmosfeer.

Hittetraagheid en die oordrag van hitte deur winde in die laer atmosfeer bring mee dat Venus se oppervlaktemperatuur nie baie verskil tussen die halfrond wat na die Son wys en die een wat wegwys nie, ondanks Venus se stadige rotasie. Winde op die oppervlak is stadig en waai teen net 'n paar kilometer per uur, maar vanweë die hoë digtheid van die atmosfeer naby die oppervlak oefen hulle 'n aansienlike groot krag uit teen enige versperrings, en vervoer stof en klippies oor die oppervlak. Dit alleen sou dit moeilik vir iemand maak om daar te loop, selfs sonder die hitte, druk en gebrek aan suurstof.[48]

Bo die digte laag CO2 is dik wolke, wat hoofsaaklik uit swaelsuur bestaan. Ook sowat 1% ysterchloried kom in die wolke voor.[49][50] Ander moontlike komponente van die wolkdeeltjies is ystersulfaat, aluminiumchloried en fosforpentoksied. Wolke by verskillende hoogtes het verskillende samestellings en deeltjiegroottes.[49] Die wolke weerkaats, nes 'n dik wolkkombers oor die Aarde,[51] sowat 70% van die sonlig wat daarop val terug die ruimte in.[52] Omdat hulle die hele planeet bedek, voorkom hulle dat Venus se oppervlak gesien kan word.

Die permanente wolkbedekking beteken dat hoewel Venus nader as die Aarde aan die Son is, dit minder sonlig op die grond kry: Net 10% van die sonlig bereik die oppervlak.[53] Sterk winde van 300 km/h waai hoog in die wolke en beweeg omtrent elke vier tot vyf aarddae om die planeet.[54] Winde op Venus waai tot 60 keer so vinnig as wat sy rotasie is, terwyl die Aarde se vinnigste winde net 10-20% sy rotasiespoed is.[55]

Ook die temperatuur by Venus se ewenaar en pole is taamlik dieselfde.[56][57] Venus se klein ashelling van minder as 3°, in vergelyking met die 23° van die Aarde, sorg ook vir klein seisoenale temperatuurverskille.[58] Hoogte is een van die min faktore wat Venus se temperature beïnvloed. Die hoogste punt op Venus, Maxwell Montes, is dus die koelste plek op die planeet, met 'n temperatuur van sowat 655 K (380 °C) en 'n atmosfeerdruk van sowat 4,5 MPa (45 bar).[59][60]

Geografie

wysig
 
'n Kleurgekodeerde hoogtekaart van Venus, met die hoër terrae-"kontinente" in geel.

Venus se oppervlak was 'n onderwerp van spekulasie totdat sommige van sy geheime in die 20ste eeu deur planetologie onthul is. Weneralandingstuie het in 1975 en 1982 foto's teruggestuur van 'n oppervlak bedek met sediment en relatief hoekige klippe.[61] In 1990-'91 het die Magellanruimtetuig die oppervlak in besonderhede gekarteer. Die grond wys tekens van uitgebreide vulkanisme, en die swael in die atmosfeer kan daarop dui dat daar onlangs uitbarstings was.[62][63]

Sowat 80% van Venus se oppervlak is bedek met gladde vulkaanvlaktes. Sowat 70% is vlaktes met riwwe en 10% gladde of lobvormige vlaktes.[64]

Die res is twee hoogland-"kontinente", een in die noordelike halfrond en die ander net suid van die ewenaar. Die noordelike kontinent is genoem na Isjtar, die Babiloniese godin van die liefde, en is omtrent twee keer so groot soos Australië. Maxwell Montes, die hoogste berg op die planeet, is op Ishtar Terra geleë. Sy piek steek 11 km bo Venus se oppervlak uit.[65] Die suidelike kontinent is Aphrodite Terra, genoem na Afrodite, die Griekse godin van die liefde; dit is die grootste een van die twee en omtrent so groot soos Suid-Amerika.[66]

Hoekom daar geen tekens van lawavloei naby enige van die sigbare kalderas is nie bly 'n raaisel. Die planeet het min slagkraters en dit wys die oppervlak is redelik jonk: 300 miljoen tot 600 miljoen jaar oud.[67][68]

Venus het 'n paar unieke oppervlakeienskappe benewens die slagkraters, berge en valleie wat gewoonlik op rotsplanete aangetref word. Onder hulle is vulkaanverskynsels met plat bokante, bekend as "farra", wat amper soos pannekoeke lyk en in grootte wissel van 20 tot 50 km breed en van 100 tot 1 000 m hoog; steragtige breukverskynsels, wat "novas" genoem word; verskynsels met beide straalvormige en konsentriese breuke wat soos spinnerakke lyk; en "koronas", ronde ringvormige breuke wat soms deur 'n laagte omring word. Dié eienskappe het 'n vulkaniese oorsprong.[69]

Die meeste oppervlakverskynsels op Venus is na geskiedkundige of mitologiese vroue genoem.[70] Uitsonderings is Maxwell Montes, wat na die Skotse teoretiese fisikus James Clerk Maxwell genoem is, en die hooglandstreke Alpha Regio, Beta Regio en Ovda Regio. Laasgenoemde drie het name gekry voordat die huidige stelsel aanvaar is deur die Internasionale Sterrekundige Vereniging, wat planetêre name reguleer.[71]

Sekere eienskappe van Venus, soos die tektoniese verskynsels wat "tessera-terreine" genoem word, vereis die teenwoordigheid van wateroseane en plaattektoniek, wat aandui bewoonbare toestande met groot waterliggame het vroeër in 'n stadium op Venus voorgekom.[72] Die aard van tessera-terreine is egter glad nie seker nie.[73]

Die resultate van studies wat op 26 Oktober 2023 aangekondig is, stel vir die eerste keer voor dat dit lyk of Venus in antieke tye plaattektoniek kon gehad en dus lewensvorme kon onderhou het.[16][17]

Vulkanisme

wysig
 
'n Radarmosaïek van twee pannekoekkoepels in Venus se Eistla-streek. Hulle is 65 km breed en minder as 1 km hoog.

'n Groot deel van Venus se oppervlak is skynbaar deur vulkanisme gevorm. Die planeet het 'n paar keer soveel vulkane as die Aarde: 167 groot vulkane is meer as 100 km breed. Die enigste vulkaankompleks van dié grootte op Aarde is die Groot Eiland van Hawaii.[69]:154 Meer as 85 000 vulkane op Venus is geïdentifiseer en gekarteer.[74][75] Dit is nie omdat Venus vulkanies aktiewer as die Aarde is nie, maar omdat sy kors ouer is en nie aan dieselfde erosieprosesse onderworpe is nie. Die Aarde se oseaankors word voortdurend by die grense van die tektoniese plate deur subduksie hersirkuleer en is gemiddeld sowat 100 miljoen jaar oud.[76] Venus se oppervlak deerenteen word geraam op 300 miljoen tot 600 miljoen jaar oud.[67][69]

Verskeie bewyse toon vulkanisme vind steeds op Venus plaas. Konsentrasies van swaeldioksied in die boonste aftmosfeer het tussen 1978 en 1986 met 'n faktor van 10 gedaal, in 2006 gestyg en daarna weer 10-voudig afgeneem.[77] Dit beteken vlakke is verskeie kere deur groot vulkaniese uitbarstings opgestoot.[78][79] Daar is al voorgestel weerlig op Venus kan ontstaan vanweë vulkaniese aktiwiteit. In Januarie 2020 het sterrekundiges bewyse gerapporteer wat aandui Venus is tans vulkanies aktief, veral vanweë die opsporing van olivien, 'n vulkaniese produk wat vinnig op die planeet se oppervlak sal verweer.[80][81]

Dié groot vulkaniese aktiwiteit word aangevuur deur 'n superwarm binnekant, wat volgens modelle verduidelik kan word aan die hand van energieke botsings toe die planeet nog jonk was. Botsings sou 'n veel groter snelheid as op Aarde gehad het, want Venus se wentelspoed is vinniger omdat hy nader aan die Son is en omdat liggame groter wenteleksentrisiteite sou moes gehad het om met die planeet te bots.[82]

In 2008 en 2009 het die Venus Express die eerste keer regstreekse bewyse van deurlopende vulkaanaktiwiteit op die planeet gevind, in die vorm van vier kortstondige infrarooiwarmkolle in die skeurgebied bekend as Ganis Chasma,[83] naby die skildvulkaan Maat Mons. Drie van die kolle is in meer as een opvolgende wenteling waargeneem. Die kolle verteenwoordig vermoedelik lawa wat pas deur vulkaanuitbarstings vrygelaat is.[84][85] Die temperatuur is nie bekend nie, want die grootte van die warmkolle kon nie gemeet word nie; dit was waarskynlik sowat 800 tot 1 100 K (527-827 °C) in vergelyking met die normale temperatuur van 740 K (467 °C).[86] In 2023 het wetenskaplikes weer topografiese foto's van die Maat Mons-streek bestudeer wat deur die Magellanruimtetuig geneem is. Deur middel van rekenaarsimulasies is bepaal die topografie het gedurende 'n tydperk van agt maande verander. Hulle het tot die gevolgtrekking gekom dat dit deur aktiewe vulkanisme veroorsaak is.[87]

Kraters

wysig
 
Slagkraters op Venus se oppervlak, in vals kleur.

Sowat 1 000 slagkraters is eweredig oor Venus se oppervlak versprei. Op ander liggame met kraters, soos die Aarde en Maan, toon kraters 'n verskeidenheid stadiums van degradasie. Op die Maan word degradasie deur daaropvolgende botsings veroorsaak en op Aarde deur reën- en winderosie. Op Venus is 85% van die kraters in 'n ongerepte toestand. Die hoeveelheid kraters, tesame met hulle goed bewaarde toestand, dui daarop dat die planeet se oppervlak hersikleer is in 'n voorval 300 miljoen tot 600 miljoen jaar gelede,[67][68] gevolg deur 'n afname in vulkanisme.[88]

Terwyl die Aarde se kors in voortdurende beweging is, is Venus vermoedelik nie in staat om so 'n proses te onderhou nie. Sonder plaattektoniek om hitte uit sy mantel te verloor, ondergaan Venus 'n sikliese proses waarin manteltemperature styg totdat dit 'n kritieke vlak bereik wat die kors verswak. Dan, oor 'n tydperk van sowat 100 miljoen jaar, kom subduksie op 'n enorme skaal voor en word die kors hersikleer.[69]

Kraters op Venus wissel van 3 tot 280 km breed. Geen kraters is kleiner as 3 km nie vanweë die invloed van die digte atmosfeer op inkomende voorwerpe. Voorwerpe met minder as 'n sekere kinetiese energie word so deur die atmosfeer vertraag dat hulle nie 'n slagkrater vorm nie.[89] Inkomende projektiele wat kleiner as 50 m breed is, sal in die atmosfeer opbreek en uitbrand voordat hulle die grond bereik.[90]

Interne struktuur

wysig
 
Die gedifferensieerde struktuur van Venus.

Min is bekend oor die interne struktuur van Venus.[91] Die ooreenkoms in die grootte en digtheid tussen Venus en die Aarde dui daarop dat hulle dieselfde interne struktuur het: 'n kern, mantel en kors. Nes met die Aarde die geval is, is Venus se kern waarskynlik minstens gedeeltelik vloeistof, want die twee planete het teen omtrent dieselfde tempo verkoel,[92] hoewel 'n heeltemal soliede kern nie uitgesluit kan word nie.[93]

Die grootste verskil tussen die twee planete is die gebrek aan bewyse van plaattektoniek op Venus, moontlik omdat sy kors te sterk is om te sak sonder water om dit minder viskeus te maak. Dit veroorsaak verminderde hitteverlies en voorkom dat die planeet afkoel. Dit is 'n waarskynlike verduideliking vir 'n gebrek aan 'n intern opgewekte magneetveld.[94] In plaas daarvan kan Venus dalk sy interne hitte verloor in periodieke groot oppervlakvernuwingsvoorvalle.[67]

Magneetveld en kern

wysig

In 1967 het Wenera 4 gevind Venus se magneetveld is baie swakker as die Aarde s'n. Die magneetveld word opgewek deur 'n wisselwerking tussen die ionosfeer en die sonwind,[95][96] eerder as deur 'n interne dinamo, soos in die Aarde se kern. Venus se klein magnetosfeer verskaf min beskerming aan die atmosfeer teen son- en kosmiese straling. Dit bereik eers op hoogtes van 54 tot 48 km dieselfde vlakke as op Aarde.[97][98]

Die gebrek aan 'n werklike magneetveld op Venus was verbasend, omdat dit byna net so groot soos die Aarde is en na verwagting 'n dinamo in sy kern gehad het. 'n Dinamo vereis drie dinge: 'n geleidende vloeistof, rotasie en konveksie. Die kern is vermoedelik elektries geleidend en, hoewel sy rotasie dikwels as te stadig beskou word, wys simulasies dit is vinnig genoeg om 'n dinamo te skep.[99][100] Dit dui aan die dinamo is afwesig weens Venus se gebrek aan konveksie in sy kern.

Op Aarde kom konveksie voor in die vloeibare buitenste deel van die kern omdat die onderste deel van die vloeistof baie warmer as die bokant is. Op Venus kon 'n oppervlakvernuwingsvoorval die plaattektoniek laat ophou werk het en gelei het tot 'n verlaagde hittevloed deur die kors. Dié isolasie-effek sou veroorsaak het dat die mantel se temperatuur toeneem en so die hittevloed uit die kern verminder. Geen interne dinamo is dus beskikbaar om 'n magneetveld aan te dryf nie. In plaas daarvan herverhit die hitte van die kern die kors.[101]

Een moontlikheid is dat Venus geen soliede kern het nie,[102] of dat sy kern nie afkoel nie sodat die hele vloeibare deel van die kern min of meer dieselfde temperatuur het. Nog 'n moontlikheid is dat sy kern reeds heeltemal solied is. Die toestand van die kern hang in 'n groot mate af van die konsentrasie swael, wat tans onbekend is.[101]

Die swak magnetosfeer om Venus beteken daar is 'n regstreekse wisselwerking tussen die sonwind en die planeet se buitenste atmosfeer. Hier word ione van waterstof en suurstof geskep deur die dissosiasie van watermolekules van ultravioletstraling. Die sonwind verskaf dan energie wat sommige van dié ione genoeg snelheid gee om uit Venus as swaartekragveld te ontsnap. Dié erosieproses lei tot die bestendige verlies van waterstof-, helium- en suurstofione met 'n klein massa, terwyl molekules met 'n groter massa, soos koolstofdioksied, meer geneig is om agter te bly.

Die atmosferiese erosie deur die sonwind kon gelei het tot die verlies van die meeste van Venus se water in die eerste miljard jaar nadat dit gevorm het.[103] Die planeet kon ook vir die eerste 2 miljard tot 3 miljard jaar van sy bestaan 'n dinamo behou het, sodat die waterverlies meer onlangs voorgekom het.[104]

Wentelbaan en rotasie

wysig
 
Venus is die tweede planeet van die Son af en voltooi 'n wentelbaan in sowat 224 aarddae.

Venus wentel om die Son op 'n afstand van sowat 0,72 AE (108 miljoen km) en voltooi elke 224,7 dae 'n wentelbaan. Hoewel al die planete se wentelbane ovaalvormig is, is Venus s'n die naaste aan rond, met 'n eksentrisiteit van minder as 0,01.[56] Simulasies van die vroeë Sonnestelsel se dinamika wys die eksentrisiteit van Venus se wentelbaan was dalk groter in die verlede, met waardes van tot 0,31.[105]

Alle planete in die Sonnestelsel wentel antikloksgewys om die Son soos van die Aarde se Noordpool af gesien. Die meeste planete roteer ook antikloksgewys om hulle as, maar Venus roteer kloksgewys (in 'n retrograde rigting) een keer elke 243 aarddae: die stadigste rotasie van enige planeet. Omdat die planeet vertraag word deur sy atmosferiese stroming, wissel die lengte van die dag ook met tot 20 minute.[106] Venus se ewenaar roteer teen 6,52 km/h, terwyl die Aarde s'n teen 1 674,4 km/h roteer.[107] Een Venusjaar is sowat 1,92 van die planeet se sinodiese dae (son-dae).[7] Vir 'n waarnemer op Venus sal die Son in die weste opkom en in die ooste ondergaan,[7] hoewel die planeet se ondeursigtige wolke sal keer dat 'n mens op die oppervlak die Son daardeur sien.[108]

Venus het geen natuurlike satelliete, of mane, nie.[109] Dit het verskeie trojane: die kwasisatelliet 2002 VE68[110][111] en nog twee tydelike trojane, 2001 CK32 en 2012 XE133.[112] In die 17de eeu het Giovanni Cassini gerapporteer 'n maan wentel om Venus, en dit is "Neith" genoem. Verskeie ander waarnemings van mane is oor die volgende 200 jaar gedoen, maar daar is vasgestel die meeste was sterre in die omgewing. Die rede dat Venus nie mane het nie kan die uitwerking van sterk songetye wees wat groot satelliete naby die binneste planete kan destabiliseer.[109]

Venus se wentelruimte bevat 'n stofringwolk.[113] Dit kon veroorsaak gewees het deur óf asteroïdes wat agter Venus aanbeweeg het[114] óf interplanetêre stof wat in golwe gemigreer het óf die oorblyfsels van die Sonnestelsel se oorspronklike sirkumstellêre skyf wat die planeetstelsel gevorm het.[115]

Waarneming

wysig
 
Venus, regs in die middel, is van die Aarde af altyd helderder as enige ander planeet of ster. Jupiter is aan die bokant van die foto sigbaar.
 
Die fases van Venus en veranderings van sy skynbare deursnee.

Met die blote oog is Venus 'n wit punt lig wat helderder as enige ander planeet of ster buiten die Son is.[116] Die planeet se gemiddelde skynbare magnitude is -4,14 met 'n standaardafwyking van 0,31.[117] Die helderste magnitude kom voor tydens die "halffase" sowat 'n maand voor of ná 'n binnekonjunksie. Venus word dowwer tot 'n magnitude van sowat -3 wanneer die Son se lig van agter af skyn.[8] Die planeet is helder genoeg om in die dag te sien,[118] maar is beter sigbaar wanneer die Son laag aan die horison sit of ondergaan. As 'n planeet wat nader aan die Son as die Aarde is, lê dit altyd binne sowat 47° van die Son af.[10]

Venus "steek die Aarde verby" elke 584 dae terwyl dit om die Son wentel.[56] Terwyl dit gebeur, verander dit van die "aandster" in die "oggendster", wat voor sonsopkoms sigbaar is. Hoewel Mercurius, die ander planeet nader aan die Son, dikwels moeilik in die skemerlig te sien is, is dit byna onmoontlik om Venus mis te kyk wanneer dit op sy helderste is. Omdat dit so helder is, word Venus dikwels verkeerdelik aangemeld as 'n "vreemde vlieënde voorwerp".[119]

Fases

wysig

Terwyl dit om die Son wentel, gaan Venus, deur 'n teleskoop gesien, deur fases soos die Maan. Die planeet lyk soos 'n klein, "vol" skyf wanneer dit met 'n buitekonjunksie aan die ander kant van die Son is. Dit is as 'n groter "kwartfase" te sien by sy maksimum elongasie van die Son, en dan lyk dit op sy helderste in die naglug. Die planeet het 'n groter "halfvorm" deur teleskope as dit aan die nabykant tussen die Aarde en die Son deurbeweeg. Dit lyk op sy grootste tydens sy "nuwe fase", wanneer dit tussen die Aarde en die Son by 'n binnekonjunksie is. Sy atmosfeer is deur teleskope sigbaar danksy die halo van sonlig wat om dit gebreek word.[10]

Dagligverskynings

wysig

Wanneer Venus helder genoeg is, met genoeg hoekafstand van die Son af, is dit maklik helder oordag met die blote oog te sien.[120] Edmund Halley het sy maksimum blote-ooghelderheid in 1716 bereken, toe baie Londenaars ontstel is deur sy verskyning in die daglig. Die Franse keiser Napoleon Bonaparte het eenkeer 'n dagligverskyning van die planeet gesien terwyl hy op 'n onthaal in Luxemburg was.[121] Nog 'n historiese dagligverskyning van die planeet het plaasgevind tydens die inhuldiging van die Amerikaanse president Abraham Lincoln op 4 Maart 1865 in Washington, D.C.[122]

 
Die oorgang van Venus in 2012, deur 'n teleskoop op 'n wit kaart geprojekteer.

Oorgange

wysig

'n Oorgang van Venus is wanneer Venus, soos van die Aarde af gesien, voor die Son verbybeweeg tydens sy binnekonjunksie. Omdat Venus se wentelbaan effens skuins teenoor dié van die Aarde lê, is daar nie 'n oorgang van Venus tydens die meeste binnekonjunksies, wat elke 1,6 jaar plaasvind, nie.

Venus beleef net 'n oorgang bo die Aarde wanneer 'n binnekonjunksie plaasvind tydens sommige dae in Junie of Desember, die tyd wanneer die twee planete se wentelbane in 'n reguit lyn met die Son lê.[123] Dit lei daartoe dat Venus net 'n oorgang beleef in siklusse van 243 jaar elk: elke 8, 105,5, 8 en 121,5 jaar.

Net sewe oorgange van Venus is tot dusver waargeneem, want die voorkoms daarvan is in 1621 deur Johannes Kepler bereken. Kaptein James Cook het in 1768 na Tahiti geseil om die derde waargenome oorgang van Venus te sien, en dit het eindelik gelei tot die verkenning van die ooskus van Australië.[124][125]

Die laaste oorgange van Venus agt jaar uitmekaar was in Junie 2004 en Junie 2012 en die voriges in Desember 1874 en Desember 1882. Die volgende sodanige oorgange sal in Desember 2117 en Desember 2125 voorkom.[126]

Verkenning

wysig

Die mens se eerste interplanetêre ruimtevlug was in 1961, toe die Sowjetunie se Wenera 1 na Venus gevlieg het.[127] Dit het egter later op pad soontoe kontak verloor.

Die eerste suksesvolle interplanetêre sending was dus die VSA se Mariner 2-sending na Venus. Dit was op 14 Desember 1962 altesaam 34 833 km bo die oppervlak en het data oor die planeet se atmosfeer versamel.[128][129] Radarwaarnemings van Venus is in die 1960's die eerste keer gedoen en het die eerste inligting verskaf oor die planeet se rotasieperiode.[130]

 
Die eerste duidelike 180-graad-panorama van Venus, en van enige planeet buiten die Aarde. (Sowjetse Wenera 9-landingstuig).

Wenera 3, wat in 1966 gelanseer is, was die mens se eerste ruimte- en landingstuig wat 'n ander hemelliggaam buiten die Maan bereik en daarteen gebots het. Dit kon nie data terugbring nie, want dit het op Venus se oppervlak neergestort.

In 1967 is Wenera 4 gelanseer. Dit het wetenskapeksperimente in Venus se atmosfeer uitgevoer voordat dit ook neergestort het. Wenera 4 het gewys die oppervlaktemperatuur is warmer as wat Mariner 2 bereken het (byna 500 °C), vasgestel die atmosfeer was 95% koolstofdioksied en gevind Venus se atmosfeer was baie digter as wat Wenera se ontwerpers verwag het.[131]

In 'n vroeë voorbeeld van ruimtesamewerking, is die data van Wenera 4 en Mariner 5 van 1967 saamgevoeg en deur 'n gesamentlike span van Amerika en die Sowjetunie ontleed.[132]

Op 15 Desember 1970 was Wenera 7 die eerste ruimtetuig wat 'n sagte landing op 'n ander planeet uitgevoer en data van daar af na die Aarde teruggestuur het.[133] In 1974 het Mariner 10 verby Venus gevlieg op pad na Mercurius en ultratvioletfoto's van die wolke geneem. Daarop is die buitengewone windsnelhede in Venus se atmosfeer gesien. Dit was die heel eerste swaartekragslinger, 'n metode wat deur latere tuie gebruik sou word.

Radarwaarnemings in die 1970's het vir die eerste keer besonderhede van Venus se oppervlak onthul. Radiogolfpulse is na die planeet gestuur en die eggo's het twee hoogs weerkaatsende gebiede onthul wat "Alpha Regio" en "Beta Regio" genoem is. Die waarnemings het ook 'n helder streek onthul wat op berge dui, en dit is "Maxwell Montes" genoem.[134]

 
'n Globale topografiese kaart van Venus, met alle landingsplekke aangedui.

In 1975 het die Sowjetse Wenera 9- en Wenera 10-landingstuie die eerste foto's van Venus se oppervlak teruggestuur. Dit was swart-wit-foto's. Nasa het nog data bekom met die Pioneer Venus-projek, wat bestaan het uit twee aparte sendings:[135] die Pioneer Venus-multituig en Pioneer Venus-wenteltuig, wat tussen 1978 en 1992 om Venus gewentel het.[136] In 1982 het Wenera 13 en Wenera 14 die eerste kleurfoto's van die oppervlak geneem. Wenera 15 en Wenera 16 het tussen 1983 en 1984 gedetailleerde kartering van 25% van Venus se oppervlak gedoen, en daarna het die baie suksesvolle Wenera-program tot 'n einde gekom.[137]

In 1985 het die Wega-ruimteprogram met sy Wega 1- en Wega 2-sendings die laaste tuie na Venus vervoer wat die atmosfeer sou binnedring, asook die heel eerste buiteaardse aërobotte.

Tussen 1990 en 1994 het die Magellanruimtetuig om Venus gewentel en die oppervlak gekarteer. Verder het tuie soos Galileo (1990),[138] Cassini–Huygens (1998/'99) en MESSENGER (2006/'07) verbyvlugte van Venus gedoen op pad na ander bestemmings.

In April 2006 het die ESA se Venus Express in 'n wentelbaan om Venus gegaan. Dit het waarnemings sonder presedent van Venus se atmosfeer verskaf. Die ESA het dit tot in Januarie 2015 in sy wentelbaan gehou.[139] In 2010 het die eerste suksesvolle interplanetêre sonseilruimtetuig, IKAROS, na Venus gevlieg vir 'n verbyvlug. Teen 2023 was daar net een aktiewe sending na Venus: Japan se Akatsuki. Dit het in op 7 Desember 2015 in 'n wentelbaan gegaan.

In die kultuur

wysig
 
Venus word net regs van die groot sipresboom uitgebeeld in Vincent van Gogh se skildery van 1889 Die Sterrenag.[140][141]

Venus is 'n primêre verskynsel in die naglug en speel dus deur die hele geskiedenis en in verskeie kulture 'n belangrike rol in mitologie, astrologie en fiksie.

Die Afrikaanse naam van die planeet was die oorspronklike antieke Romeinse naam daarvan. Die Romeine het Venus genoem na hulle godin van liefde, wat geskoei was op die Griekse godin van liefde, Afrodite.[142] Sy was weer gebaseer op die ooreenstemmende Mesopotamiese godin Inanna (wat Isjtar was in die godsdiens van die Akkadiese Ryk). Hulle is almal met die planeet verbind.[143][144] Die weekdag Vrydag is genoem na die Germaanse godin Frigg, wat met die Romeinse godin Venus verbind is.

 
Die agtpuntster is 'n simbool wat in sommige kulture vir Venus gebruik word. Hier is die agtpuntster die Ster van Isjtar, die Babiloniese godin, langs die sonskyf van haar broer, Sjamasj, en die skedelmaan van hulle vader, Sin, op 'n grensklip van die Babiloniese koning Meli-Sjipak II uit die 12de eeu v.C.

Verskeie gesange bring lof aan Inanna in haar rol as die godin van die planeet Venus.[145][144][143] Die teologieprofessor Jeffrey Cooley meen Inanna se bewegings in baie mites kan ooreenstem met die bewegings van die planeet Venus in die lug.[145] Die afgebroke bewegings van Venus hou verband met die mitologie sowel as Inanna se dubbele aard.[145] In Inanna se afdaling na die onderwêreld is Inanna in staat om, anders as enige ander god, na die onderwêreld af te daal en weer na die hemel terug te keer. Dit lyk of die planeet Venus 'n soortgelyke afdaling ondergaan deur in die weste onder te gaan en weer in die ooste op te kom.[145] In Inanna en Sjoekaletoeda word beskryf hoe Sjoekaletoeda die hemel bespied op soek na Inanna; hy bespied waarskynlik die oostelike en westelike horisonne.[146] In dieselfde mite maak Ianna, op soek na haar aanvaller, self verskeie bewegings wat ooreenstem met die bewegings van Venus in die lug.[145]

Die antieke Egiptenare en antieke Grieke het moontlik teen die 2de millennium v.C., of op die laatste teen die Laat Tydperk, onder die invloed van Mesopotamië geweet die oggendster en aandster is dieselfde liggaam.[147][148] Die Egiptenare het die oggendster as Tioumoutiri en die aandster as Ouaiti geken.[149]

Klassieke digters soos Homeros, Sapfo, Ovidius en Vergilius het van die ster en sy lig geskryf.[150] Digters soos William Blake, Robert Frost, Alfred Tennyson en William Wordsworth het odes daaraan geskryf.[151]

In Indië is Shukra Graha ("die planeet Shukra") na die magtige sint Shukra genoem. Shukra, wat in die Indiese Vediese astrologie[152] gebruik word, beteken in Sanskrit "duidelik, rein, helder". Venus is in Indonesies en Maleisies bekend as Kejora.

In Chinees word die planeet Jīn-xīng (金星), die "goue planeet" of die "metaalelement", genoem. In moderne Chinees, Japannees, Koreaans en Viëtnamees word daar letterlik na die planeet verwys as die "metaalster" (Chinees: 金星), geskoei op die vyf elemente.[153][154][155][156]

Die Maja het Venus as die belangrikste hemelliggaam naas die Son en Maan beskou. Hulle het dit genoem Chac ek,[157] of Noh Ek', "die Groot Ster".[158] Venus se siklusse was belangrik vir hulle kalender.

Simbole

wysig
 

Die simbool van 'n sirkel met 'n klein kruis daaronder is die sogenaamde Venussimbool, wat sy naam gekry het van die gebruik daarvan in astrologie. Die simbool is van antieke Griekse oorsprong, en is meer dikwels die simbool van vroulikheid,[159] terwyl die Marssimbool vir manlikheid gebruik word. Dié tekens beskryf mans en vrou stereotipies as so verskillend dat 'n mens kan sê hulle kom van verskillende planete. Dié idee is veral in 1992 gewild gemaak deur die boek Men Are from Mars, Women Are from Venus.[160][161]

Baie ander simbole word ook vir Venus gebruik, soos dié van die ster (byvoorbeeld die Ster van Isjtar).

Verwysings

wysig
  1. 1,0 1,1 1,2 1,3 Williams, David R. (15 April 2005). "Venus Fact Sheet" (in Engels). NASA. Geargiveer vanaf die oorspronklike op 29 Mei 2020. Besoek op 12 Oktober 2007.
  2. Lorenz, Ralph D.; Lunine, Jonathan I.; Withers, Paul G.; McKay, Christopher P. (2001). "Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport" (PDF). Ames Research Center, University of Arizona Lunar and Planetary Laboratory. Besoek op 21 Augustus 2007.{{cite web}}: AS1-onderhoud: meer as een naam (link)
  3. "The MeanPlane (Invariable plane) of the Solar System passing through the barycenter". 3 April 2009. Geargiveer vanaf die oorspronklike op 14 Mei 2009. Besoek op 10 April 2009. (gemaak met Solex 10 Geargiveer 20 Desember 2008 op Wayback Machine geskryf deur Aldo Vitagliano)
  4. "Report on the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites" (in Engels). International Astronomical Union. 2000. Geargiveer vanaf die oorspronklike op 12 Mei 2020. Besoek op 12 April 2007.
  5. 5,0 5,1 Mallama, A.; Wang, D.; Howard, R.A. (2006). "Venus phase function and forward scattering from H2SO4". Icarus. 182 (1): 10–22. Bibcode:2006Icar..182...10M. doi:10.1016/j.icarus.2005.12.014.
  6. 6,0 6,1 "Venus: Facts & Figures". NASA. Geargiveer vanaf die oorspronklike op 29 September 2006. Besoek op 12 April 2007.
  7. 7,0 7,1 7,2 "Space Topics: Compare the Planets: Mercury, Venus, Earth, The Moon, and Mars" (in Engels). Planetary Society. Geargiveer vanaf die oorspronklike op 14 April 2012. Besoek op 12 April 2007.
  8. 8,0 8,1 Mallama, A. (2011). "Planetary magnitudes". Sky and Telescope. 121 (1): 51–56.
  9. "HORIZONS Web-Interface for Venus (Major Body=299)". JPL Horizons On-Line Ephemeris System. 27 Februarie 2006. Besoek op 28 November 2010.
  10. 10,0 10,1 10,2 Espenak, Fred (1996). "Venus: Twelve year planetary ephemeris, 1995–2006". NASA Reference Publication 1349. NASA/Goddard Space Flight Center. Geargiveer vanaf die oorspronklike op 16 Mei 2020. Besoek op 20 Junie 2006.
  11. Lawrence, Pete (2005). "In Search of the Venusian Shadow". Digitalsky.org.uk. Geargiveer vanaf die oorspronklike op 11 Junie 2012. Besoek op 13 Junie 2012.
  12. Walker, John. "Viewing Venus in Broad Daylight". Fourmilab Switzerland. Geargiveer vanaf die oorspronklike op 29 Maart 2017. Besoek op 19 April 2017.
  13. Jakosky, Bruce M. (1999). "Atmospheres of the Terrestrial Planets". In Beatty, J. Kelly; Petersen, Carolyn Collins; Chaikin, Andrew (reds.). The New Solar System (4th uitg.). Boston: Sky Publishing. pp. 175–200. ISBN 978-0-933346-86-4. OCLC 39464951.
  14. Hashimoto, George L.; Roos-Serote, Maarten; Sugita, Seiji; Gilmore, Martha S.; Kamp, Lucas W.; Carlson, Robert W.; Baines, Kevin H. (31 Desember 2008). "Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data". Journal of Geophysical Research: Planets. Advancing Earth and Space Science. 113 (E5). Bibcode:2008JGRE..113.0B24H. doi:10.1029/2008JE003134. S2CID 45474562.
  15. Shiga, David (10 Oktober 2007). "Did Venus's ancient oceans incubate life?". New Scientist. Geargiveer vanaf die oorspronklike op 24 Maart 2009. Besoek op 17 September 2017.
  16. 16,0 16,1 Chang, Kenneth (26 Oktober 2023). "Billions of Years Ago, Venus May Have Had a Key Earthlike Feature - A new study makes the case that the solar system's hellish second planet once may have had plate tectonics that could have made it more hospitable to life". The New York Times. Geargiveer vanaf die oorspronklike op 26 Oktober 2023. Besoek op 27 Oktober 2023.
  17. 17,0 17,1 Weller, Matthew B.; et al. (26 Oktober 2023). "Venus's atmospheric nitrogen explained by ancient plate tectonics". Nature Astronomy: 1–9. Bibcode:2023NatAs.tmp....6W. doi:10.1038/s41550-023-02102-w. Geargiveer vanaf die oorspronklike op 27 Oktober 2023. Besoek op 27 Oktober 2023.{{cite journal}}: AS1-onderhoud: bibcode (link)
  18. "Moons". NASA Solar System Exploration. Geargiveer vanaf die oorspronklike op 19 Oktober 2019. Besoek op 26 Augustus 2019.
  19. 19,0 19,1 Newitz, Annalee (11 Desember 2013). "Here's Carl Sagan's original essay on the dangers of climate change". Gizmodo. Geargiveer vanaf die oorspronklike op 3 September 2021. Besoek op 3 September 2021.
  20. 20,0 20,1 Dorminey, Bruce (31 Desember 2018). "Galaxy May Be Littered With Dead Aliens Blindsided By Natural Climate Change". Forbes. Besoek op 21 April 2023.
  21. Lopes, Rosaly M. C.; Gregg, Tracy K. P. (2004). Volcanic worlds: exploring the Solar System's volcanoes. Springer Publishing. p. 61. ISBN 978-3-540-00431-8.
  22. Squyres, Steven W. (2016). "Venus". Encyclopædia Britannica Online.  
  23. Darling, David "Venus". Encyclopedia of Science.  
  24. 24,0 24,1 Lebonnois, Sebastien; Schubert, Gerald (26 Junie 2017). "The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2" (PDF). Nature Geoscience. Springer Science and Business Media LLC. 10 (7): 473–477. Bibcode:2017NatGe..10..473L. doi:10.1038/ngeo2971. ISSN 1752-0894. S2CID 133864520.
  25. Taylor, Fredric W. (2014). "Venus: Atmosphere". In Tilman, Spohn; Breuer, Doris; Johnson, T. V. (reds.). Encyclopedia of the Solar System. Oxford: Elsevier Science & Technology. ISBN 978-0-12-415845-0. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 12 Januarie 2016.
  26. "Venus". Case Western Reserve University. 13 September 2006. Geargiveer vanaf die oorspronklike op 26 April 2012. Besoek op 21 Desember 2011.
  27. Lewis, John S. (2004). Physics and Chemistry of the Solar System (2nd uitg.). Academic Press. p. 463. ISBN 978-0-12-446744-6.
  28. Prockter, Louise (2005). "Ice in the Solar System" (PDF). Johns Hopkins APL Technical Digest. 26 (2): 175–188. S2CID 17893191. Geargiveer vanaf die oorspronklike (PDF) op 20 September 2019. Besoek op 27 Julie 2009.
  29. "The Planet Venus". Geargiveer vanaf die oorspronklike op 7 Augustus 2021. Besoek op 17 Augustus 2021.
  30. Halliday, Alex N. (15 Maart 2013). "The origins of volatiles in the terrestrial planets". Geochimica et Cosmochimica Acta. 105: 146–171. Bibcode:2013GeCoA.105..146H. doi:10.1016/j.gca.2012.11.015. ISSN 0016-7037. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 14 Julie 2020.
  31. Owen, Tobias; Bar-Nun, Akiva; Kleinfeld, Idit (Julie 1992). "Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars". Nature. 358 (6381): 43–46. Bibcode:1992Natur.358...43O. doi:10.1038/358043a0. ISSN 1476-4687. PMID 11536499. S2CID 4357750. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 14 Julie 2020.
  32. Pepin, Robert O. (1 Julie 1991). "On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles". Icarus. 92 (1): 2–79. Bibcode:1991Icar...92....2P. doi:10.1016/0019-1035(91)90036-S. ISSN 0019-1035.
  33. Ernst, Richard (3 November 2022). "Venus was once more Earth-like, but climate change made it uninhabitable". The Conversation. Besoek op 21 April 2023.
  34. Way, M. J.; Del Genio, Anthony D. (2020). "Venusian Habitable Climate Scenarios: Modeling Venus Through Time and Applications to Slowly Rotating Venus‐Like Exoplanets". Journal of Geophysical Research: Planets. American Geophysical Union (AGU). 125 (5). arXiv:2003.05704. Bibcode:2020JGRE..12506276W. doi:10.1029/2019je006276. ISSN 2169-9097.
  35. Way, M. J.; Del Genio, Anthony D.; Kiang, Nancy Y.; Sohl, Linda E.; Grinspoon, David H.; Aleinov, Igor; Kelley, Maxwell; Clune, Thomas (28 Augustus 2016). "Was Venus the first habitable world of our solar system?". Geophysical Research Letters. American Geophysical Union (AGU). 43 (16): 8376–8383. arXiv:1608.00706. Bibcode:2016GeoRL..43.8376W. doi:10.1002/2016gl069790. ISSN 0094-8276. PMC 5385710. PMID 28408771.
  36. Grinspoon, David H.; Bullock, M. A. (Oktober 2007). "Searching for Evidence of Past Oceans on Venus". Bulletin of the American Astronomical Society. 39: 540. Bibcode:2007DPS....39.6109G.
  37. Steigerwald, Bill (2 November 2022). "NASA Study: Massive Volcanism May Have Altered Ancient Venus' Climate". NASA. Besoek op 5 Mei 2023.
  38. Kasting, J. F. (1988). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus". Icarus. 74 (3): 472–494. Bibcode:1988Icar...74..472K. doi:10.1016/0019-1035(88)90116-9. PMID 11538226. Geargiveer vanaf die oorspronklike op 7 Desember 2019. Besoek op 25 Junie 2019.
  39. Tillman, Nola Taylor (18 Oktober 2018). "Venus' Atmosphere: Composition, Climate and Weather". Space.com. Besoek op 9 Mei 2023.
  40. Mullen, Leslie (13 November 2002). "Venusian Cloud Colonies". Astrobiology Magazine. Geargiveer vanaf die oorspronklike op 16 Augustus 2014.
  41. Landis, Geoffrey A. (Julie 2003). "Astrobiology: The Case for Venus" (PDF). Journal of the British Interplanetary Society. 56 (7–8): 250–254. Bibcode:2003JBIS...56..250L. NASA/TM—2003-212310. Geargiveer vanaf die oorspronklike (PDF) op 7 Augustus 2011.
  42. Cockell, Charles S. (Desember 1999). "Life on Venus". Planetary and Space Science. 47 (12): 1487–1501. Bibcode:1999P&SS...47.1487C. doi:10.1016/S0032-0633(99)00036-7.
  43. Drake, Nadia (14 September 2020). "Possible sign of life on Venus stirs up heated debate". National Geographic. Geargiveer vanaf die oorspronklike op 14 September 2020. Besoek op 14 September 2020.
  44. Greaves, J. S.; Richards, A. M. S.; Bains, W.; Rimmer, P. B.; Sagawa, H.; Clements, D. L.; Seager, S.; Petkowski, J. J.; Sousa-Silva, Clara; Ranjan, Sukrit; Drabek-Maunder, Emily; Fraser, Helen J.; Cartwright, Annabel; Mueller-Wodarg, Ingo; Zhan, Zhuchang; Friberg, Per; Coulson, Iain; Lee, E'lisa; Hoge, Jim (2020). "Phosphine gas in the cloud decks of Venus". Nature Astronomy. 5 (7): 655–664. arXiv:2009.06593. Bibcode:2021NatAs...5..655G. doi:10.1038/s41550-020-1174-4. S2CID 221655755. Geargiveer vanaf die oorspronklike op 14 September 2020. Besoek op 14 September 2020.
  45. Lincowski, Andrew P.; Meadows, Victoria S.; Crisp, David; Akins, Alex B.; Schwieterman, Edward W.; Arney, Giada N.; Wong, Michael L.; Steffes, Paul G.; Parenteau, M. Niki; Domagal-Goldman, Shawn (2021). "Claimed Detection of PH3 in the Clouds of Venus is Consistent with Mesospheric SO2". The Astrophysical Journal. 908 (2): L44. arXiv:2101.09837. Bibcode:2021ApJ...908L..44L. doi:10.3847/2041-8213/abde47. S2CID 231699227.
  46. Beall, Abigail (21 Oktober 2020). "More doubts cast on potential signs of life on Venus". New Scientist. doi:10.1016/S0262-4079(20)31910-2. S2CID 229020261. Besoek op 29 Januarie 2023.
  47. Snellen, I. A. G.; Guzman-Ramirez, L.; Hogerheijde, M. R.; Hygate, A. P. S.; van der Tak, F. F. S. (Desember 2020). "Re-analysis of the 267 GHz ALMA observations of Venus". Astronomy & Astrophysics. 644: L2. arXiv:2010.09761. Bibcode:2020A&A...644L...2S. doi:10.1051/0004-6361/202039717. S2CID 224803085. Besoek op 29 Januarie 2023.
  48. Moshkin, B. E.; Ekonomov, A. P.; Golovin, Iu. M. (1979). "Dust on the surface of Venus". Kosmicheskie Issledovaniia (Cosmic Research). 17 (2): 280–285. Bibcode:1979CosRe..17..232M.
  49. 49,0 49,1 Krasnopolsky, V. A.; Parshev, V. A. (1981). "Chemical composition of the atmosphere of Venus". Nature. 292 (5824): 610–613. Bibcode:1981Natur.292..610K. doi:10.1038/292610a0. S2CID 4369293.
  50. Krasnopolsky, Vladimir A. (2006). "Chemical composition of Venus atmosphere and clouds: Some unsolved problems". Planetary and Space Science. 54 (13–14): 1352–1359. Bibcode:2006P&SS...54.1352K. doi:10.1016/j.pss.2006.04.019.
  51. Siegel, Ethan (14 Julie 2021). "This Is Why Venus Is The Brightest, Most Extreme Planet We Can See". Forbes. Besoek op 11 Junie 2023.
  52. Davis, Margaret (14 Julie 2021). "Why Is Venus So Bright? Here's How Its Proximity to Earth, Highly Reflected Clouds Affects It". Science Times. Besoek op 11 Junie 2023.
  53. "Venus and Earth: worlds apart – Transit of Venus blog". ESA Blog Navigator – Navigator page for active ESA blogs. 31 Mei 2012. Besoek op 11 Junie 2023.
  54. Rossow, W. B.; del Genio, A. D.; Eichler, T. (1990). "Cloud-tracked winds from Pioneer Venus OCPP images". Journal of the Atmospheric Sciences. 47 (17): 2053–2084. Bibcode:1990JAtS...47.2053R. doi:10.1175/1520-0469(1990)047<2053:CTWFVO>2.0.CO;2. ISSN 1520-0469.
  55. Normile, Dennis (7 Mei 2010). "Mission to probe Venus's curious winds and test solar sail for propulsion". Science. 328 (5979): 677. Bibcode:2010Sci...328..677N. doi:10.1126/science.328.5979.677-a. PMID 20448159.
  56. 56,0 56,1 56,2 Williams, David R. (25 November 2020). "Venus Fact Sheet". NASA Goddard Space Flight Center. Geargiveer vanaf die oorspronklike op 11 Mei 2018. Besoek op 15 April 2021.
  57. Lorenz, Ralph D.; Lunine, Jonathan I.; Withers, Paul G.; McKay, Christopher P. (1 Februarie 2001). "Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport" (PDF). Geophysical Research Letters. Ames Research Center, University of Arizona Lunar and Planetary Laboratory. 28 (3): 415–418. Bibcode:2001GeoRL..28..415L. doi:10.1029/2000GL012336. S2CID 15670045. Geargiveer (PDF) vanaf die oorspronklike op 3 Oktober 2018. Besoek op 21 Augustus 2007.
  58. "Interplanetary Seasons". NASA Science. NASA. 19 Junie 2000. Geargiveer vanaf die oorspronklike op 14 April 2021. Besoek op 14 April 2021.
  59. Basilevsky, A. T.; Head, J. W. (2003). "The surface of Venus". Reports on Progress in Physics. 66 (10): 1699–1734. Bibcode:2003RPPh...66.1699B. doi:10.1088/0034-4885/66/10/R04. S2CID 13338382. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 2 Desember 2019.
  60. McGill, G. E.; Stofan, E. R.; Smrekar, S. E. (2010). "Venus tectonics". In Watters, T. R.; Schultz, R. A. (reds.). Planetary Tectonics. Cambridge University Press. pp. 81–120. ISBN 978-0-521-76573-2. Geargiveer vanaf die oorspronklike op 23 Junie 2016. Besoek op 18 Oktober 2015.
  61. Mueller, Nils (2014). "Venus Surface and Interior". In Tilman, Spohn; Breuer, Doris; Johnson, T. V. (reds.). Encyclopedia of the Solar System (3rd uitg.). Oxford: Elsevier Science & Technology. ISBN 978-0-12-415845-0. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 12 Januarie 2016.
  62. Esposito, Larry W. (9 Maart 1984). "Sulfur Dioxide: Episodic Injection Shows Evidence for Active Venus Volcanism". Science. 223 (4640): 1072–1074. Bibcode:1984Sci...223.1072E. doi:10.1126/science.223.4640.1072. PMID 17830154. S2CID 12832924. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 2 Desember 2019.
  63. Bullock, Mark A.; Grinspoon, David H. (Maart 2001). "The Recent Evolution of Climate on Venus" (PDF). Icarus. 150 (1): 19–37. Bibcode:2001Icar..150...19B. CiteSeerX 10.1.1.22.6440. doi:10.1006/icar.2000.6570. Geargiveer vanaf die oorspronklike (PDF) op 23 Oktober 2003.
  64. Basilevsky, Alexander T.; Head, James W. III (1995). "Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas". Earth, Moon, and Planets. 66 (3): 285–336. Bibcode:1995EM&P...66..285B. doi:10.1007/BF00579467. S2CID 21736261.
  65. Jones, Tom; Stofan, Ellen (2008). Planetology: Unlocking the Secrets of the Solar System. National Geographic Society. p. 74. ISBN 978-1-4262-0121-9. Geargiveer vanaf die oorspronklike op 16 Julie 2017. Besoek op 20 April 2017.
  66. Kaufmann, W. J. (1994). Universe. New York: W.H. Freeman. p. 204. ISBN 978-0-7167-2379-0.
  67. 67,0 67,1 67,2 67,3 Nimmo, F.; McKenzie, D. (1998). "Volcanism and Tectonics on Venus". Annual Review of Earth and Planetary Sciences. 26 (1): 23–53. Bibcode:1998AREPS..26...23N. doi:10.1146/annurev.earth.26.1.23. S2CID 862354.
  68. 68,0 68,1 Strom, Robert G.; Schaber, Gerald G.; Dawson, Douglas D. (25 Mei 1994). "The global resurfacing of Venus". Journal of Geophysical Research. 99 (E5): 10899–10926. Bibcode:1994JGR....9910899S. doi:10.1029/94JE00388. S2CID 127759323. Geargiveer vanaf die oorspronklike op 16 September 2020. Besoek op 25 Junie 2019.
  69. 69,0 69,1 69,2 69,3 Frankel, Charles (1996). Volcanoes of the Solar System. Cambridge University Press. ISBN 978-0-521-47770-3. Besoek op 30 Januarie 2023.
  70. (18–22 March 1991) "Naming the Newly Found Landforms on Venus".. 
  71. Young, Carolynn, red. (1 Augustus 1990). The Magellan Venus Explorer's Guide. California: Jet Propulsion Laboratory. p. 93. Geargiveer vanaf die oorspronklike op 4 Desember 2016. Besoek op 13 Januarie 2016.
  72. Petkowski, Dr. Janusz; Seager, Prof. Sara (18 November 2021). "Did Venus ever have oceans? - MIT". Venus Cloud Life - MIT. Besoek op 13 April 2023.
  73. Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne (1 November 2017). "Venus Surface Composition Constrained by Observation and Experiment". Space Science Reviews. 212 (3): 1511–1540. Bibcode:2017SSRv..212.1511G. doi:10.1007/s11214-017-0370-8. ISSN 1572-9672. S2CID 126225959.
  74. "A new catalog pinpoints volcanic cones in the best available surface images of Venus – those gathered 30 years ago by NASA's Magellan spacecraft". skyandtelescope.org. Besoek op 16 April 2023.
  75. Hahn, Rebecca M.; Byrne, Paul K. (April 2023). "A Morphological and Spatial Analysis of Volcanoes on Venus". Journal of Geophysical Research: Planets. 128 (4): e2023JE007753. Bibcode:2023JGRE..12807753H. doi:10.1029/2023JE007753.
  76. Karttunen, Hannu; Kroger, P.; Oja, H.; Poutanen, M.; Donner, K. J. (2007). Fundamental Astronomy. Springer. p. 162. ISBN 978-3-540-34143-7. Besoek op 30 Januarie 2023.
  77. Bauer, Markus (3 Desember 2012). "Have Venusian volcanoes been caught in the act?". European Space Agency. Geargiveer vanaf die oorspronklike op 14 April 2021. Besoek op 14 April 2021.
  78. Glaze, Lori S. (Augustus 1999). "Transport of SO2 by explosive volcanism on Venus". Journal of Geophysical Research. 104 (E8): 18899–18906. Bibcode:1999JGR...10418899G. doi:10.1029/1998JE000619.
  79. Marcq, Emmanuel; Bertaux, Jean-Loup; Montmessin, Franck; Belyaev, Denis (Januarie 2013). "Variations of sulfur dioxide at the cloud top of Venus's dynamic atmosphere". Nature Geoscience. 6 (1): 25–28. Bibcode:2013NatGe...6...25M. doi:10.1038/ngeo1650. S2CID 59323909. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 2 Desember 2019.
  80. Hall, Sannon (9 Januarie 2020). "Volcanoes on Venus Might Still Be Smoking - Planetary science experiments on Earth suggest that the sun's second planet might have ongoing volcanic activity". The New York Times. Geargiveer vanaf die oorspronklike op 9 Januarie 2020. Besoek op 10 Januarie 2020.
  81. Filiberto, Justin (3 Januarie 2020). "Present-day volcanism on Venus as evidenced from weathering rates of olivine". Science. 6 (1): eaax7445. Bibcode:2020SciA....6.7445F. doi:10.1126/sciadv.aax7445. PMC 6941908. PMID 31922004.
  82. Early, Energetic Collisions Could Have Fueled Venus Volcanism: Study | Sci.News
  83. "Ganis Chasma". Gazetteer of Planetary Nomenclature. USGS Astrogeology Science Center. Geargiveer vanaf die oorspronklike op 13 Oktober 2018. Besoek op 14 April 2021.
  84. Lakdawalla, Emily (18 Junie 2015). "Transient hot spots on Venus: Best evidence yet for active volcanism". The Planetary Society. Geargiveer vanaf die oorspronklike op 20 Junie 2015. Besoek op 20 Junie 2015.
  85. "Hot lava flows discovered on Venus". European Space Agency. 18 Junie 2015. Geargiveer vanaf die oorspronklike op 19 Junie 2015. Besoek op 20 Junie 2015.
  86. Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W. (17 Junie 2015). "Active volcanism on Venus in the Ganiki Chasma rift zone". Geophysical Research Letters. 42 (12): 4762–4769. Bibcode:2015GeoRL..42.4762S. doi:10.1002/2015GL064088. S2CID 16309185.
  87. Kluger, Jeffrey (17 Maart 2023). "Why the Discovery of an Active Volcano on Venus Matters". Time. Besoek op 19 Maart 2023.
  88. Romeo, I.; Turcotte, D. L. (2009). "The frequency-area distribution of volcanic units on Venus: Implications for planetary resurfacing" (PDF). Icarus. 203 (1): 13–19. Bibcode:2009Icar..203...13R. doi:10.1016/j.icarus.2009.03.036. Geargiveer (PDF) vanaf die oorspronklike op 19 Desember 2019. Besoek op 15 Desember 2018.
  89. Herrick, R. R.; Phillips, R. J. (1993). "Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population". Icarus. 112 (1): 253–281. Bibcode:1994Icar..112..253H. doi:10.1006/icar.1994.1180.
  90. Morrison, David; Owens, Tobias C. (2003). The Planetary System (3rd uitg.). San Francisco: Benjamin Cummings. ISBN 978-0-8053-8734-6.
  91. (16–20 March 1981) "Density constraints on the composition of Venus".: 1507–1516, Houston, TX: Pergamon Press. 
  92. Faure, Gunter; Mensing, Teresa M. (2007). Introduction to planetary science: the geological perspective. Springer eBook collection. Springer. p. 201. ISBN 978-1-4020-5233-0.
  93. Dumoulin, C.; Tobie, G.; Verhoeven, O.; Rosenblatt, P.; Rambaux, N. (Junie 2017). "Tidal constraints on the interior of Venus" (PDF). Journal of Geophysical Research: Planets. 122 (6): 1338–1352. Bibcode:2017JGRE..122.1338D. doi:10.1002/2016JE005249. S2CID 134766723. Geargiveer (PDF) vanaf die oorspronklike op 9 Mei 2020. Besoek op 3 Mei 2021.
  94. Nimmo, F. (2002). "Crustal analysis of Venus from Magellan satellite observations at Atalanta Planitia, Beta Regio, and Thetis Regio". Geology. 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613. S2CID 13293506.
  95. Dolginov, Sh.; Eroshenko, E. G.; Lewis, L. (September 1969). "Nature of the Magnetic Field in the Neighborhood of Venus". Cosmic Research. 7: 675. Bibcode:1969CosRe...7..675D.
  96. Kivelson, G. M.; Russell, C. T. (1995). Introduction to Space Physics. Cambridge University Press. ISBN 978-0-521-45714-9.
  97. Patel, M.R.; Mason, J.P.; Nordheim, T.A.; Dartnell, L.R. (2022). "Constraints on a potential aerial biosphere on Venus: II. Ultraviolet radiation". Icarus. Elsevier BV. 373: 114796. Bibcode:2022Icar..37314796P. doi:10.1016/j.icarus.2021.114796. ISSN 0019-1035.
  98. Herbst, Konstantin; Banjac, Saša; Atri, Dimitra; Nordheim, Tom A. (24 Desember 2019). "Revisiting the cosmic-ray induced Venusian radiation dose in the context of habitability". Astronomy & Astrophysics. EDP Sciences. 633: A15. arXiv:1911.12788. Bibcode:2020A&A...633A..15H. doi:10.1051/0004-6361/201936968. ISSN 0004-6361. S2CID 208513344.
  99. Luhmann, J. G.; Russell, C. T. (1997). "Venus: Magnetic Field and Magnetosphere". In Shirley, J. H.; Fainbridge, R. W. (reds.). Encyclopedia of Planetary Sciences. New York: Chapman and Hall. pp. 905–907. ISBN 978-1-4020-4520-2. Geargiveer vanaf die oorspronklike op 14 Julie 2010. Besoek op 19 Julie 2006.
  100. Stevenson, D. J. (15 Maart 2003). "Planetary magnetic fields" (PDF). Earth and Planetary Science Letters. 208 (1–2): 1–11. Bibcode:2003E&PSL.208....1S. doi:10.1016/S0012-821X(02)01126-3. Geargiveer (PDF) vanaf die oorspronklike op 16 Augustus 2017. Besoek op 6 November 2018.
  101. 101,0 101,1 Nimmo, Francis (November 2002). "Why does Venus lack a magnetic field?" (PDF). Geology. 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613. Geargiveer (PDF) vanaf die oorspronklike op 1 Oktober 2018. Besoek op 28 Junie 2009.
  102. Konopliv, A. S.; Yoder, C. F. (1996). "Venusian k2 tidal Love number from Magellan and PVO tracking data". Geophysical Research Letters. 23 (14): 1857–1860. Bibcode:1996GeoRL..23.1857K. doi:10.1029/96GL01589.
  103. Svedhem, Håkan; Titov, Dmitry V.; Taylor, Fredric W.; Witasse, Olivier (November 2007). "Venus as a more Earth-like planet". Nature. 450 (7170): 629–632. Bibcode:2007Natur.450..629S. doi:10.1038/nature06432. PMID 18046393. S2CID 1242297.
  104. (April 2019) "Prospects for an ancient dynamo and modern crustal remnant magnetism on Venus" in 21st EGU General Assembly, EGU2019, Proceedings from the conference held 7–12 April 2019 in Vienna, Austria.. 18876. 
  105. Kane, S. R.; Vervoort, P.; Horner, J.; Pozuelos, P. J. (September 2020). "Could the Migration of Jupiter Have Accelerated the Atmospheric Evolution of Venus?". Planetary Science Journal. 1 (2): 42–51. arXiv:2008.04927. Bibcode:2020PSJ.....1...42K. doi:10.3847/PSJ/abae63.
  106. "The length of a day on Venus is always changing - Space". EarthSky. 5 Mei 2021. Besoek op 28 April 2023.
  107. Bakich, Michael E. (2000). "Rotational velocity (equatorial)". The Cambridge Planetary Handbook. Cambridge University Press. p. 50. ISBN 978-0-521-63280-5. Besoek op 31 Januarie 2023.
  108. Brunier, Serge (2002). Solar System Voyage. Vertaal deur Dunlop, Storm. Cambridge University Press. p. 40. ISBN 978-0-521-80724-1. Geargiveer vanaf die oorspronklike op 3 Augustus 2020. Besoek op 17 September 2017.
  109. 109,0 109,1 Sheppard, Scott S.; Trujillo, Chadwick A. (Julie 2009). "A Survey for Satellites of Venus". Icarus. 202 (1): 12–16. arXiv:0906.2781. Bibcode:2009Icar..202...12S. doi:10.1016/j.icarus.2009.02.008. S2CID 15252548.
  110. Mikkola, S.; Brasser, R.; Wiegert, P.; Innanen, K. (Julie 2004). "Asteroid 2002 VE68: A Quasi-Satellite of Venus". Monthly Notices of the Royal Astronomical Society. 351 (3): L63. Bibcode:2004MNRAS.351L..63M. doi:10.1111/j.1365-2966.2004.07994.x.
  111. De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl (November 2012). "On the Dynamical Evolution of 2002 VE68". Monthly Notices of the Royal Astronomical Society. 427 (1): 728–39. arXiv:1208.4444. Bibcode:2012MNRAS.427..728D. doi:10.1111/j.1365-2966.2012.21936.x. S2CID 118535095.
  112. De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl (Junie 2013). "Asteroid 2012 XE133: A Transient Companion to Venus". Monthly Notices of the Royal Astronomical Society. 432 (2): 886–93. arXiv:1303.3705. Bibcode:2013MNRAS.432..886D. doi:10.1093/mnras/stt454. S2CID 118661720.
  113. Frazier, Sarah (16 April 2021). "NASA's Parker Solar Probe Sees Venus Orbital Dust Ring". NASA. Besoek op 21 Januarie 2023.
  114. Garner, Rob (12 Maart 2019). "What Scientists Found After Sifting Through Dust in the Solar System". NASA. Besoek op 21 Januarie 2023.
  115. Rehm, Jeremy (15 April 2021). "Parker Solar Probe Captures First Complete View of Venus Orbital Dust Ring". JHUAPL. Besoek op 21 Januarie 2023.
  116. Dickinson, Terrence (1998). NightWatch: A Practical Guide to Viewing the Universe. Buffalo, NY: Firefly Books. p. 134. ISBN 978-1-55209-302-3. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 12 Januarie 2016.
  117. Mallama, Anthony; Hilton, James L. (Oktober 2018). "Computing apparent planetary magnitudes for The Astronomical Almanac". Astronomy and Computing. 25: 10–24. arXiv:1808.01973. Bibcode:2018A&C....25...10M. doi:10.1016/j.ascom.2018.08.002. S2CID 69912809.
  118. Flanders, Tony (25 Februarie 2011). "See Venus in Broad Daylight!". Sky & Telescope. Geargiveer vanaf die oorspronklike op 11 September 2012. Besoek op 11 Januarie 2016.
  119. "Identifying UFOs". Night Sky Network. Astronomical Society of the Pacific. Geargiveer vanaf die oorspronklike op 10 April 2021. Besoek op 10 April 2021.
  120. "Viewing Venus in Broad Daylight". www.fourmilab.ch. Besoek op 17 Julie 2023.
  121. Chatfield, Chris (2010). "The Solar System with the naked eye". The Gallery of Natural Phenomena. Geargiveer vanaf die oorspronklike op 13 Junie 2015. Besoek op 19 April 2017.
  122. Gaherty, Geoff (26 Maart 2012). "Planet Venus Visible in Daytime Sky Today: How to See It". Space.com. Geargiveer vanaf die oorspronklike op 19 April 2017. Besoek op 19 April 2017.
  123. "2004 and 2012 Transits of Venus". NASA. 8 Junie 2004. Besoek op 2 Mei 2023.
  124. Hornsby, T. (1771). "The quantity of the Sun's parallax, as deduced from the observations of the transit of Venus on June 3, 1769". Philosophical Transactions of the Royal Society. 61: 574–579. doi:10.1098/rstl.1771.0054. S2CID 186212060. Geargiveer vanaf die oorspronklike op 9 Mei 2019. Besoek op 8 Januarie 2008.
  125. Woolley, Richard (1969). "Captain Cook and the Transit of Venus of 1769". Notes and Records of the Royal Society of London. 24 (1): 19–32. doi:10.1098/rsnr.1969.0004. ISSN 0035-9149. JSTOR 530738. S2CID 59314888.
  126. Espenak, Fred (2004). "Transits of Venus, Six Millennium Catalog: 2000 BCE to 4000 CE". Transits of the Sun. NASA. Geargiveer vanaf die oorspronklike op 19 Maart 2012. Besoek op 14 Mei 2009.
  127. Mitchell, Don (2003). "Inventing The Interplanetary Probe". The Soviet Exploration of Venus. Geargiveer vanaf die oorspronklike op 12 Oktober 2018. Besoek op 27 Desember 2007.
  128. Mayer, C. H.; McCullough, T. P.; Sloanaker, R. M. (Januarie 1958). "Observations of Venus at 3.15-cm Wave Length". The Astrophysical Journal. 127: 1. Bibcode:1958ApJ...127....1M. doi:10.1086/146433.
  129. Jet Propulsion Laboratory (1962). Mariner-Venus 1962 Final Project Report (Report). SP-59. NASA. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660005413_1966005413.pdf. Besoek op 7 July 2017. 
  130. Goldstein, R. M.; Carpenter, R. L. (1963). "Rotation of Venus: Period Estimated from Radar Measurements". Science. 139 (3558): 910–911. Bibcode:1963Sci...139..910G. doi:10.1126/science.139.3558.910. PMID 17743054. S2CID 21133097.
  131. Mitchell, Don (2003). "Plumbing the Atmosphere of Venus". The Soviet Exploration of Venus. Geargiveer vanaf die oorspronklike op 30 September 2018. Besoek op 27 Desember 2007.
  132. (11–24 May 1969) "Report on the Activities of the COSPAR Working Group VII"., Prague, Czechoslovakia: National Academy of Sciences. 
  133. "Science: Onward from Venus". Time. 8 Februarie 1971. Geargiveer vanaf die oorspronklike op 21 Desember 2008. Besoek op 2 Januarie 2013.
  134. Campbell, D. B.; Dyce, R. B.; Pettengill, G. H. (1976). "New radar image of Venus". Science. 193 (4258): 1123–1124. Bibcode:1976Sci...193.1123C. doi:10.1126/science.193.4258.1123. PMID 17792750. S2CID 32590584.
  135. Colin, L.; Hall, C. (1977). "The Pioneer Venus Program". Space Science Reviews. 20 (3): 283–306. Bibcode:1977SSRv...20..283C. doi:10.1007/BF02186467. S2CID 122107496.
  136. Williams, David R. (6 Januarie 2005). "Pioneer Venus Project Information". NASA/Goddard Space Flight Center. Geargiveer vanaf die oorspronklike op 15 Mei 2019. Besoek op 19 Julie 2009.
  137. Greeley, Ronald; Batson, Raymond M. (2007). Planetary Mapping. Cambridge University Press. p. 47. ISBN 978-0-521-03373-2. Geargiveer vanaf die oorspronklike op 29 September 2021. Besoek op 19 Julie 2009.
  138. "Welcome to the Galileo Orbiter Archive Page". PDS Atmospheres Node. 18 Oktober 1989. Besoek op 11 April 2023.
  139. Howell, Elizabeth (16 Desember 2014). "Venus Express Out Of Gas; Mission Concludes, Spacecraft On Death Watch". Universe Today. Geargiveer vanaf die oorspronklike op 22 April 2021. Besoek op 22 April 2021.
  140. Whitney, Charles A. (September 1986). "The Skies of Vincent van Gogh". Art History. 9 (3): 356. doi:10.1111/j.1467-8365.1986.tb00206.x.
  141. Boime, Albert (Desember 1984). "Van Gogh's Starry Night: A History of Matter and a Matter of History" (PDF). Arts Magazine: 88. Geargiveer (PDF) vanaf die oorspronklike op 23 November 2018. Besoek op 28 Julie 2018.
  142. "Aphrodite and the Gods of Love: Roman Venus (Getty Villa Exhibitions)". Getty. Besoek op 15 April 2023.
  143. 143,0 143,1 Nemet-Nejat, Karen Rhea (1998), Daily Life in Ancient Mesopotamia, Greenwood, p. 203, ISBN 978-0-313-29497-6, https://archive.org/details/dailylifeinancie00neme/page/203, besoek op 2023-02-02 
  144. 144,0 144,1 Black, Jeremy; Green, Anthony (1992). Gods, Demons and Symbols of Ancient Mesopotamia: An Illustrated Dictionary. The British Museum Press. pp. 108–109. ISBN 978-0-7141-1705-8. Geargiveer vanaf die oorspronklike op 20 November 2020. Besoek op 23 Augustus 2020.
  145. 145,0 145,1 145,2 145,3 145,4 Cooley, Jeffrey L. (2008). "Inana and Šukaletuda: A Sumerian Astral Myth". KASKAL. 5: 161–172. ISSN 1971-8608. Geargiveer vanaf die oorspronklike op 24 Desember 2019. Besoek op 28 Desember 2017.
  146. Cooley, Jeffrey L. (2008). "Inana and Šukaletuda: A Sumerian Astral Myth". KASKAL. 5: 163–164. ISSN 1971-8608. Geargiveer vanaf die oorspronklike op 24 Desember 2019. Besoek op 28 Desember 2017.
  147. Parker, R. A. (1974). "Ancient Egyptian Astronomy". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. The Royal Society. 276 (1257): 51–65. Bibcode:1974RSPTA.276...51P. doi:10.1098/rsta.1974.0009. ISSN 0080-4614. JSTOR 74274. S2CID 120565237.
  148. Quack, Joachim Friedrich (2019-05-23), "The Planets in Ancient Egypt", Oxford Research Encyclopedia of Planetary Science, Oxford University Press, doi:10.1093/acrefore/9780190647926.013.61, ISBN 978-0-19-064792-6 
  149. Cattermole, Peter John; Moore, Patrick (1997). Atlas of Venus. Cambridge University Press. p. 9. ISBN 978-0-521-49652-0.
  150. Atsma, Aaron J. "Eospheros & Hespheros". Theoi.com. Geargiveer vanaf die oorspronklike op 14 Julie 2019. Besoek op 15 Januarie 2016.
  151. Sobel, Dava (2005). The Planets. Harper Publishing. pp. 53–70. ISBN 978-0-14-200116-5.
  152. Bhalla, Prem P. (2006). Hindu Rites, Rituals, Customs and Traditions: A to Z on the Hindu Way of Life. Pustak Mahal. p. 29. ISBN 978-81-223-0902-7.
  153. De Groot, Jan Jakob Maria (1912). Religion in China: universism. a key to the study of Taoism and Confucianism. p. 300. Geargiveer vanaf die oorspronklike op 22 Julie 2011. Besoek op 8 Januarie 2010. {{cite book}}: |work= ignored (hulp)
  154. Crump, Thomas (1992). The Japanese numbers game: the use and understanding of numbers in modern Japan. Routledge. pp. 39–40. ISBN 978-0-415-05609-0.
  155. Hulbert, Homer Bezaleel (1909). The passing of Korea. Doubleday, Page & company. p. 426. Besoek op 8 Januarie 2010.
  156. "Sao Kim - VOER". Vietnam Open Educational Resources. Besoek op 26 Desember 2022.
  157. The Book of Chumayel: The Counsel Book of the Yucatec Maya, 1539-1638. Richard Luxton. 1899. pp. 6, 194. ISBN 978-0-89412-244-6.
  158. Milbrath, Susan (1999). Star Gods of The Mayans: Astronomy in Art, Folklore, and Calendars. Austin, TX: University of Texas Press. pp. 200–204, 383. ISBN 978-0-292-79793-2.
  159. Schott, G D (22 Desember 2005). "Sex symbols ancient and modern: their origins and iconography on the pedigree". BMJ. 331 (7531): 1509–1510. doi:10.1136/bmj.331.7531.1509. ISSN 0959-8138. PMC 1322246. PMID 16373733.
  160. Brammer, John Paul (10 Februarie 2020). "Love/Hate Reads: 'Men Are From Mars, Women Are From Venus,' Revisited". VICE. Besoek op 17 April 2023.
  161. Morin, Amy (19 Augustus 2016). "Why The Mars And Venus Conversations Must End: The Truth About Gender Differences In The Workplace". Forbes. Besoek op 17 April 2023.

Eksterne skakels

wysig