37 kriptonrubidiumstronsium
K

Rb

Cs
Algemeen
Naam, simbool, getal rubidium, Rb, 37
Chemiese reeks alkalimetale
Groep, periode, blok 1, 5, s
Voorkoms gryswit
Atoommassa 85.4678 (3) g/mol
Elektronkonfigurasie [Kr] 5s1
Elektrone per skil 2, 8, 18, 8, 1
Fisiese eienskappe
Toestand vastestof
Digtheid (naby k.t.) 1.532 g/cm³
Vloeistof digtheid teen s.p. 1.46 g/cm³
Smeltpunt 312.46 K
(39.31 °C)
Kookpunt 961 K
(688 °C)
Kritieke punt (geëkstrapoleer)
2093 K, 16 MPa
Smeltingswarmte 2.19 kJ/mol
Verdampingswarmte 75.77 kJ/mol
Warmtekapasiteit (25 °C) 31.060 J/(mol·K)
Dampdruk
P/Pa 1 10 100 1 k 10 k 100 k
teen T/K 434 486 552 641 769 958
Atoomeienskappe
Kristalstruktuur kubies liggaamsgesentreerd
Ruimtegroep Im3m  nommer: 229
Strukturbericht-kode A2
Oksidasietoestande 1
(sterk basiese oksied
Elektronegatiwiteit 0.82 (Skaal van Pauling)
Ionisasie-energieë 1ste: 403.0 kJ/mol
2de: 2633 kJ/mol
3de: 3860 kJ/mol
Atoomradius 235 pm
Atoomradius (ber.) 265 pm
Kovalente radius 211 pm
Van der Waals-radius 244 pm
Diverse
Magnetiese rangskikking geen data
Elektriese resistiwiteit (20 °C) 128 nΩ·m
Termiese geleidingsvermoë (300 K) 58.2 W/(m·K)
Spoed van klank (dun staaf) (20 °C) 1300 m/s
Young se modulus 2.4 GPa
Massamodulus 2.5 GPa
Mohs se hardheid 0.3
Brinell hardheid 0.216 MPa
CAS-registernommer 7440-17-7
Vernaamste isotope
Isotope van rubidium
iso NV halfleeftyd VM VE (MeV) VP
83Rb sin 86.2 d ε - 83Kr
γ 0.52, 0.53,
0.55
-
84Rb sin 32.9 d ε - 84Kr
β+ 1.66, 0.78 84Kr
γ 0.881 -
β- 0.892 84Sr
85Rb 72.168% Rb is stabiel met 48 neutrone
86Rb sin 18.65 d β- 1.775 86Sr
γ 1.0767 -
87Rb 27.835% 4.88×1010 j β- 0.283 87Sr
Portaal Chemie

Rubidium is 'n chemiese element in die periodieke tabel met die simbool Rb en atoomgetal 37. Rb is 'n sagte, silwerwitmetaal in die alkalimetaalgroep. Rb-87 is 'n isotoop wat natuurlik voorkom en is effe radio-aktief. Rubidium is hoogs reaktief met eienskappe soortgelyk aan die ander groep 1 elemente, soos dat dit spontaan in lug ontbrand.

Kenmerkende eienskappe

wysig

Rubidium is die tweede mees elektropositiewe element uit die stabiele alkaliese elemente en kan as 'n vloeistof by kamertemperatuur voorkom. Soos ander groep 1 elemente reageer hierdie metaal spontaan in lug en heftig met water, met die vrystelling van waterstof wat soms ontbrand. Soos ander alkalimetale vorm dit amalgame met kwik en ook legerings met goud, sesium, natrium en kalium. Die element straal 'n rooierige-pers kleur in 'n vlam uit.

Gebruike

wysig

Potensiële of ander teenswoordige gebruike van rubidium sluit in:

  • 'n Werksvloeistof in dampturbines.
  • In vakuumbuise om oorblywende gasse te verwyder.
  • As 'n bestanddeel van fotoselle.
  • As die resonante element in atoomhorlosies.
  • 'n Bestanddeel van spesiale glassoorte.
  • Die vervaardiging van superoksied deur verbranding in suurstof.
  • In die studie van kaliumioonkanale in biologie.

Rubidium word maklik geïoniseer, dus is dit al oorweeg vir gebruik in ioonenjins vir ruimtetuie (sesium en xenon is egter meer doeltreffend vir dié doeleindes).

Dit is ook al oorweeg vir gebruik in 'n termo-elektriese generator wat gebruik maak van die magnetohidrodinamiese beginsel, waar rubidium ione gevorm word deur verhitting by hoë temperature en dan aan 'n magnetiese veld blootgestel word. Hierdie ione gelei elektrisiteit en tree op soos die windings van 'n generator en sodoende ontstaan 'n elektriese stroom.

Rubidium, veral 87Rb, in dampvorm is een van die mees gebruikte atoomspesies vir laserverkoelingsdoeleindes en Bose-Einstein kondensasie. Die kenmerke wat dit gewens maak vir hierdie toepassings is die geredelike beskikbaarheid van goedkoop diode laserlig by die relevante golflengte en die laer temperature wat vereis word om 'n beduidende dampdruk te verkry.

Rubidium word ook gebruik vir die polarisering van 3He. Gepolariseerde Rb polariseer 3He deur hiperfyn interaksie. Gepolariseerde 3He selle word al meer gewilder vir die polarisering van neutrone en ook vir neutronpolarisasie metings.

Geskiedenis

wysig

Rubidium (L rubidus, dieprooi) is in 1861 deur Robert Bunsen en Gustav Kirchoff in die mineraal lepidoliet ontdek deur van 'n spektroskoop gebruik te maak. Die element het egter weinig nywerheidsgebruike gehad tot en met die 1920's. Geskiedkundig was die belangrikste gebruik van rubidium in navorsing en ontwikkeling gewees, hoofsaaklik in chemiese en elektroniese toepassings.

Verspreiding

wysig

Hierdie element word gereken die 16de mees volopste element in die aarde se kors te wees. Dit kom natuurlik in die minerale leusiet, pollukiet en zinnwaldiet voor, wat almal spoorhoeveelhede tot soveel as 1% van die element se oksied bevat. Lepidoliet bevat 1.5% rubidium en is ook dan die kommersiële bron van die element. Sommige kalium-minerale en kaliumchloriedes bevat ook die element in kommersieel betekenisvolle hoeveelhede. Noemenswaardige bronne is ook die groot neerslae van pollukiet by die Bernic-meer, Manitoba. In 1997 kon die metaal in klein hoeveelhede teen 'n prys van ongeveer VS $ 25/gram aangekoop word.

Rubidium-metaal kan onder andere vervaardig word deur die reduksie van rubidiumchloried met kalsium.

Verbindings

wysig

Die mees algemene verbindings van rubidium is RbCl, RbF en Rb2SO4. Rubidiumverbindings is dikwels goed in water oplosbaar.

Rubidium vorm ten minste vier oksiede: Rb2O, Rb2O2, Rb2O3, RbO2.

Rubidiumverbindings word soms in vuurwerk gebruik om 'n pers kleur daaraan te verleen.

RbAg4I5 het die hoogste geleidingsvermoë van enige bekende ioonkristalle. Hierdie eienskap kan dalk nuttig wees in die vervaardiging van dun filmbatterye en ander toepassings.

Isotope

wysig

Daar bestaan 24 isotope van rubidium met slegs twee daarvan wat natuurlik voorkom naamlik Rb-85 (72%) en die radio-aktiewe Rb-87 (27.8%). Normale rubidiummengsels is voldoende radioaktief om fotografiese film 'n mistige voorkoms te gee binne 'n tydperk van 30 tot 60 dae.

Rb-87 het 'n halfleeftyd van 48.8×109 jaar. Dit vervang kalium geredelik in minerale en kom daarom betreklik wyd verspreid voor. Rb is al dikwels gebruik in die ouderdomvastelling van rotse; Rb-87 verval na stabiele stronsium-87 deur die emissie van 'n negatiewe beta-partikel.

Tydens fraksionele kristallisasie, neig stronsium om in plagioklase gekonsentreer te raak, wat Rb in die vloeistoffase laat. Om hierdie rede sal die Rb/Sr verhouding in magma met tyd verhoog wat ly tot 'n verhoogde Rb/Sr verhouding met toenemende rotsdifferensiasie. Die hoogste verhouding (10 of meer) kom in pegmatiete voor. As die aanvanklike hoeveelheid Sr bekend of geëkstrapoleer kan word, kan die ouderdom bepaal word deur die meting van die Rb en Sr konsentrasies asook die Sr-87/Sr-86 verhouding. Hierdie datums dui die ware ouderdom van die mineraal aan slegs as die rotse nie daarna weer aan verandering blootgestel is nie.

Voorsorgmaatreëls

wysig

Rubidium reageer heftig met water en kan brande veroorsaak. Om beide veiligheid en suiwerheid te verseker moet die element onder 'n droë minerale olie, in 'n vakuum of onder 'n inerte atmosfeer bewaar word.

Biologiese uitwerking

wysig

Rubidium, net soos natrium en kalium, kom byna altyd in sy +1 oksidasietoestand voor. Die menslike liggaam neig om Rb+-ione te hanteer asof hulle kaliumione is en daarom konsentreer Rubidium in die elektrolitiese vloeistowwe van die liggaam. Die ione is nie buitengewoon giftig nie en kan betreklik maklik deur sweet en urine uitgeskei word. Indien dit egter in oormaat ingeneem word kan dit gevaarlik wees.

Bronnelys

wysig

Eksterne skakels

wysig


H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
Alkalimetale Aardalkalimetale Lantaniede Aktiniede Oorgangsmetale Hoofgroepmetale Metalloïde Niemetale Halogene Edelgasse Chemie onbekend